In the classification of finite simple groups, groups of Lie type are a set of infinite families of simple lie groups. These are the other infinite families besides te cyclic groups and alternating groups.
A decent list at: en.wikipedia.org/wiki/List_of_finite_simple_groups, en.wikipedia.org/wiki/Group_of_Lie_type is just too unclear. The groups of Lie type can be subdivided into:
- Chevalley groups
- TODO the rest
The first in this family discovered were a subset of the Chevalley groups by Galois: , so it might be a good first one to try and understand what it looks like.
TODO understand intuitively why they are called of Lie type. Their names , seem to correspond to the members of the classification of simple Lie groups which are also named like that.
But they are of course related to Lie groups, and as suggested at Video "Yang-Mills 1 by David Metzler (2011)" part 2, the continuity actually simplifies things.
They are the finite projective special linear groups.
This was the first infinite family of simple groups discovered after the simple cyclic groups and alternating groups. The first case discovered was by Galois. You should understand that one first.
Articles by others on the same topic
Groups of Lie type are a class of algebraic groups that can be associated with simple Lie algebras and are defined over finite fields. They play a significant role in the theory of finite groups, particularly in the classification of finite simple groups. The concept of groups of Lie type arises from the representation theory of Lie algebras over fields, especially over finite fields.