Equivalent to Lagrangian mechanics but formulated in a different way.
Motivation: Lagrangian vs Hamiltonian.
TODO understand original historical motivation, www.youtube.com/watch?v=SZXHoWwBcDc says it is from optics.
Intuitively, the Hamiltonian is the total energy of the system in terms of arbitrary parameters, a bit like Lagrangian mechanics.
Bibliography:
The key difference from Lagrangian mechanics is that the Hamiltonian approach groups variables into pairs of coordinates called the phase space coordinates:This leads to having two times more unknown functions than in the Lagrangian. However, it also leads to a system of partial differential equations with only first order derivatives, which is nicer. Notably, it can be more clearly seen in phase space.
- generalized coordinates, generally positions or angles
- their corresponding conjugate momenta, generally velocities, or angular velocities
Bibliography:
Analogous to what the Euler-Lagrange equation is to Lagrangian mechanics, Hamilton's equations give the equations of motion from a given input Hamiltonian:So once you have the Hamiltonian, you can write down this system of partial differential equations which can then be numerically solved.
Articles by others on the same topic
Hamiltonian mechanics is a reformulation of classical mechanics that arises from Lagrangian mechanics and provides a powerful framework for analyzing dynamical systems, particularly in the context of physics and engineering. Developed by William Rowan Hamilton in the 19th century, this approach focuses on energy rather than forces and is intimately related to the principles of symplectic geometry. ### Key Features of Hamiltonian Mechanics 1.