Like a heat equation but for functions without time dependence, space-only.
TODO confirm: does the solution of the heat equation always converge to the solution of the Laplace equation as time tends to infinity?
In one dimension, the Laplace equation is boring as it is just a straight line since the second derivative must be 0. That also matches our intuition of the limit solution of the heat equation.
Uniqueness: Uniqueness theorem for Poisson's equation.
Show up when solving the Laplace's equation on spherical coordinates by separation of variables, which leads to the differential equation shown at: en.wikipedia.org/w/index.php?title=Legendre_polynomials&oldid=1018881414#Definition_via_differential_equation.
Generalization of Laplace's equation where the value is not necessarily 0.
A solution to Laplace's equation.
Correspond to the angular part of Laplace's equation in spherical coordinates after using separation of variables as shown at: en.wikipedia.org/wiki/Spherical_harmonics#Laplace's_spherical_harmonics
Articles by others on the same topic
There are currently no matching articles.