Contains the first sporadic groups discovered by far: 11 and 12 in 1861, and 22, 23 and 24 in 1973. And therefore presumably the simplest! The next sporadic ones discovered were the Janko groups, only in 1965!
Each is a permutation group on elements. There isn't an obvious algorithmic relationship between and the actual group.
TODO initial motivation? Why did Mathieu care about k-transitive groups?
Their; k-transitive group properties seem to be the main characterization, according to Wikipedia:Looking at the classification of k-transitive groups we see that the Mathieu groups are the only families of 4 and 5 transitive groups other than symmetric groups and alternating groups. 3-transitive is not as nice, so let's just say it is the stabilizer of and be done with it.
- 22 is 3-transitive but not 4-transitive.
- four of them (11, 12, 23 and 24) are the only sporadic 4-transitive groups as per the classification of 4-transitive groups (no known simpler proof as of 2021), which sounds like a reasonable characterization. Note that 12 and 25 are also 5 transitive.
TODO why do we care about this?
Note that if a group is k-transitive, then it is also k-1-transitive.
TODO this would give a better motivation for the Mathieu group
Higher transitivity: mathoverflow.net/questions/5993/highly-transitive-groups-without-assuming-the-classification-of-finite-simple-g
Might be a bit complex: math.stackexchange.com/questions/698327/classification-of-triply-transitive-finite-groups
en.wikipedia.org/w/index.php?title=Mathieu_group&oldid=1034060469#Multiply_transitive_groups is a nice characterization of 4 of the Mathieu groups.
Apparently only Mathieu group and Mathieu group .
www.maths.qmul.ac.uk/~pjc/pps/pps9.pdf mentions:Hmm, is that 54, or more likely 5 and 4?
The automorphism group of the extended Golay code is the 54-transitive Mathieu group . This is one of only two finite 5-transitive groups other than symmetric and alternating groups
scite.ai/reports/4-homogeneous-groups-EAKY21 quotes link.springer.com/article/10.1007%2FBF01111290 which suggests that is is also another one of the Mathieu groups, math.stackexchange.com/questions/698327/classification-of-triply-transitive-finite-groups#comment7650505_3721840 and en.wikipedia.org/wiki/Mathieu_group_M12 mentions .
math.stackexchange.com/questions/700235/is-there-an-easy-proof-for-the-classification-of-6-transitive-finite-groups says there aren't any non-boring ones.
A master thesis reviewing its results: scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=5051&context=etd_theses
Articles by others on the same topic
There are currently no matching articles.