- Stern-Gerlach experiment
- fine structure split in energy levels
- anomalous Zeeman effect
- of a more statistical nature, but therefore also macroscopic and more dramatically observable:
- ferromagnetism
- Bose-Einstein statistics vs Fermi-Dirac statistics. A notable example is the difference in superfluid transition temperature between superfluid helium-3 and superfluid helium-4.
Originally done with (neutral) silver atoms in 1921, but even clearer theoretically was the hydrogen reproduction in 1927 by T. E. Phipps and J. B. Taylor.
The hydrogen experiment was apparently harder to do and the result is less visible, TODO why: physics.stackexchange.com/questions/33021/why-silver-atoms-were-used-in-stern-gerlach-experiment
The Stern-Gerlach Experiment by Educational Services, Inc (1967)
Source. Featuring MIT Professor Jerrold R. Zacharias. Amazing experimental setup demonstration, he takes apart much of the experiment to show what's going on.Needs an inhomogenous magnetic field to move the atoms up or down: magnetic dipole in an inhomogenous magnetic field. TODO how it is generated?
Basic component in spintronics, used in both giant magnetoresistance
What is spintronics and how is it useful? by SciToons (2019)
Source. Gives a good 1 minute explanation of tunnel magnetoresistance.Introduction to Spintronics by Aurélien Manchon (2020) giant magnetoresistance section
. Source. Describes how giant magnetoresistance was used in magnetoresistive disk heads in the 90's providing a huge improvement in disk storage density over the pre-existing inductive sensors
More comments at: Video "Introduction to Spintronics by Aurélien Manchon (2020)".
Introduction to Spintronics by Aurélien Manchon (2020) spin-transfer torque section
. Source. Describes how how spin-transfer torque was used in magnetoresistive RAM
More comments at: Video "Introduction to Spintronics by Aurélien Manchon (2020)".
Articles by others on the same topic
There are currently no matching articles.