Eigendecomposition of a matrix by Ciro Santilli 35 Updated +Created
Every invertible matrix can be written as:
where:
Note therefore that this decomposition is unique up to swapping the order of eigenvectors. We could fix a canonical form by sorting eigenvectors from smallest to largest in the case of a real number.
Intuitively, Note that this is just the change of basis formula, and so:
  • changes basis to align to the eigenvectors
  • multiplies eigenvectors simply by eigenvalues
  • changes back to the original basis