Jacobi zeta function

ID: jacobi-zeta-function

The Jacobi zeta function is a complex function that arises in the context of elliptic functions, named after the mathematician Carl Gustav Jacob Jacobi. It is often denoted as \( Z(u, m) \), where \( u \) is a complex variable and \( m \) is a parameter related to the elliptic modulus. The Jacobi zeta function is defined in relation to the elliptic sine and elliptic cosine functions.

New to topics? Read the docs here!