The Jacobi zeta function is a complex function that arises in the context of elliptic functions, named after the mathematician Carl Gustav Jacob Jacobi. It is often denoted as \( Z(u, m) \), where \( u \) is a complex variable and \( m \) is a parameter related to the elliptic modulus. The Jacobi zeta function is defined in relation to the elliptic sine and elliptic cosine functions.
Articles by others on the same topic
There are currently no matching articles.