Representation of the Lorentz group Updated +Created
One of the representations of the Lorentz group that show up in the Representation theory of the Lorentz group.
State of the art Updated +Created
Oxygen Updated +Created
Aluminium Updated +Created
The Final Encyclopedia Updated +Created
Nuclear fission Updated +Created
Klein-Gordon equation Updated +Created
A relativistic version of the Schrödinger equation.
Correctly describes spin 0 particles.
The most memorable version of the equation can be written as shown at Section "Klein-Gordon equation in Einstein notation" with Einstein notation and Planck units:
Has some issues which are solved by the Dirac equation:
Mold Updated +Created
Aspen HYSYS Updated +Created
Video 1.
Aspen Hysys Introduction by Emmanuel Oloyede (2016)
Source. Holy crap, the UI is identical to Microsoft Word with that huge top bar!!!
Neutron temperature Updated +Created
The speed of neutrons greatly influences how well they are absorbed by different isotopes.
Nitrogen Updated +Created
Polonium Updated +Created
Discovered by Marie Curie, published July 1999.
Natural science Updated +Created
Ciro Santilli often wonders to himself, how much of the natural sciences can one learn in a lifetime? Certainly, a very strong basis, with concrete experimental and physics, chemistry and biology should be attainable to all? How much Ciro manages to learning and teach in those areas is a kind of success metric of Ciro's life.
Pseudoscience Updated +Created
Calcium Updated +Created
B4 Oxford physics course Updated +Created
www-pnp.physics.ox.ac.uk/~barra/teaching.shtml As of 2023, contains some good 2015 materials: web.archive.org/web/20220525094139/http://www-pnp.physics.ox.ac.uk/~barra/teaching.shtml It was called "Subatomic physics" back then.
2015 professor: Alan J. Barr.
Possible 2022 professor: Guy Wilkinson (unconfirmed): www.chch.ox.ac.uk/staff/professor-guy-wilkinson
B6 Oxford physics course Updated +Created
users.ox.ac.uk/~corp0014/B6-lectures.html gives a syllabus:
  • Heat capacity in solids, localised harmonic oscillator models (Dulong-Petit law and Einstein model)
  • Heat capacity in solids, a model of sound waves (Debye model)
  • A gas of classical charged particles (Drude theory)
  • A gas of charged fermions (Sommerfeld theory)
  • Bonding
  • Microscopic theory of vibrations: the 1D monatomic harmonic chain. Mike Glazer's Chainplot program.
  • Microscopic theory of vibrations: the 1D diatomic harmonic chain
  • Microscopic theory of electrons in solids: the 1D tight-binding chain
  • Geometry of solids: crystal structure in real space. VESTA, 3D visualization program for structural models; an example crystal structure database.
  • Geometry of solids: real space and reciprocal space. Reciprocal Space teaching and learning package.
  • Reciprocal space and scattering. A fun way to discover the world of crystals and their symmetries through diffraction.
  • Scattering experiments II
  • Scattering experiments III
  • Waves in reciprocal space
  • Nearly-free electron model
  • Band structure and optical properties
  • Dynamics of electrons in bands
  • Semiconductor devices. Intel's "A History of Innovation"; Moore's Law; From Sand to Circuits.
  • Magnetic properties of atoms
  • Collective magnetism. A micromagnetic simulation tool, The Object Oriented MicroMagnetic Framework (OOMMF); OOMMF movies of magnetic domains and domain reversal.
  • Mean field theory
Problem set dated 2015: users.ox.ac.uk/~corp0014/B6-materials/B6_Problems.pdf Marked by: A. Ardavan and T. Hesjedal. Some more stuff under: users.ox.ac.uk/~corp0014/B6-materials/
The book is the fully commercial The Oxford Solid State Basics.
Russia Updated +Created

Unlisted articles are being shown, click here to show only listed articles.