This is an interesting initiative which has some similarities to Ciro Santilli's OurBigBook project.
The fatal flaw of the initiative in Ciro Santilli's opinion is the lack of user-generated content. We will never get there without UGC and algorithms, never.
Also as of 2021, it mostly useless business courses: learn.saylor.org unfortunately.
But it has several redeeming factors which Ciro Santilli aproves of:
- exam as a service-like
- they have a GitHub: github.com/saylordotorgo
The founder Michael J. Saylor looks a bit crooked, Rich people who create charitable prizes are often crooked comes to mind. But maybe he's just weird.
Michael Saylor interview by Lex Fridman (2022)
Source. At the timestamp:What statement... maybe he's actually not crooked, maybe it was just an accounting mistake... God, why.
When I go, all my assets will flow into a foundation, and the foundation's mission is to make education free for everybody forever.
If only Ciro Santilli knew how to contact him and convince him that his current approach is innefective and that Ciro has something better! Michael, please Google into this page some day, Ciro Santilli needs funding for OurBigBook.com. A hopeless Tweet at: twitter.com/cirosantilli/status/1548350114623660035. Also tried to hit his
saylor@strategy.com
. Single particle double slit experiment by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
This experiment seems to be really hard to do, and so there aren't many super clear demonstration videos with full experimental setup description out there unfortunately.
For single-photon non-double-slit experiments see: single photon production and detection experiments. Those are basically a pre-requisite to this.
photon experiments:
- aapt.scitation.org/doi/full/10.1119/1.4955173 "Video recording true single-photon double-slit interference" by Aspden and Padgetta (2016). Abstract says using spontaneous parametric down-conversion detection of the second photon to know when to turn the camera on
Non-elementary particle:
- 2019-10-08: 25,000 Daltons
- interactive.quantumnano.at/letsgo/ awesome interactive demo that allows you to control many parameters on a lab. Written in Flash unfortunately, in 2015... what a lack of future proofing!
Experiments that involve sequencing bulk DNA found in a sample to determine what species are present, as opposed to sequencing just a single specific specimen. Examples of samples that are often used:
- river water to determine which bacteria are present, notably to determine if the water is free of dangerous bacteria. A concrete example is shown at: Section "How to use an Oxford Nanopore MinION to extract DNA from river water and determine which bacteria live in it".
- sea water biodiversity: ocean-microbiome.embl.de/companion.html
- food, including searching for desirable microorganisms such as in cheese or bread yeast
- poo, e.g. to study how the human microbiome influences health. There are companies actively working on this, e.g.: www.microbiotica.com/
One related application which most people would not consider metagenomics, is that of finding circulating tumor DNA in blood to detect tumors.
Caused by slipped strand mispairing.
Absorption, spontaneous and stimulated emission by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
The Dirac equation can be derived basically "directly" from the Representation theory of the Lorentz group for the spin half representation, this is shown for example at Physics from Symmetry by Jakob Schwichtenberg (2015) 6.3 "Dirac Equation".
The Diract equation is the spacetime symmetry part of the quantum electrodynamics Lagrangian, i.e. is describes how spin half particles behave without interactions. The full quantum electrodynamics Lagrangian can then be reached by adding the internal symmetry.
As mentioned at spin comes naturally when adding relativity to quantum mechanics, this same method allows us to analogously derive the equations for other spin numbers.
Bibliography:
Deriving The Dirac equation by Andrew Dotson (2019)
Source. Spin is one of the defining properties of elementary particles, i.e. number that describes how an elementary particle behaves, much like electric charge and mass.
The approach shown in this section: Section "Spin comes naturally when adding relativity to quantum mechanics" shows what the spin number actually means in general. As shown there, the spin number it is a direct consequence of having the laws of nature be Lorentz invariant. Different spin numbers are just different ways in which this can be achieved as per different Representation of the Lorentz group.
Video 1. "Quantum Mechanics 9a - Photon Spin and Schrodinger's Cat I by ViaScience (2013)" explains nicely how:
- incorporated into the Dirac equation as a natural consequence of special relativity corrections, but not naturally present in the Schrödinger equation, see also: the Dirac equation predicts spin
- photon spin can be either linear or circular
- the linear one can be made from a superposition of circular ones
- straight antennas produce linearly polarized photos, and Helical antennas circularly polarized ones
- a jump between 2s and 2p in an atom changes angular momentum. Therefore, the photon must carry angular momentum as well as energy.
- cannot be classically explained, because even for a very large estimate of the electron size, its surface would have to spin faster than light to achieve that magnetic momentum with the known electron charge
- as shown at Video "Quantum Mechanics 12b - Dirac Equation II by ViaScience (2015)", observers in different frames of reference see different spin states
Quantum Spin - Visualizing the physics and mathematics by Physics Videos by Eugene Khutoryansky (2016)
Source. Has the property of visiting all descendants before the parent.
The dot product is a positive definite matrix, and so we see that those will have an important link to familiar geometry.
How the hell are you supposed to develop an open source implementation of something that has a closed standard?
Excessive encapsulation is the root of much evil by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Some anecdotes.
Ciro Santilli never splits up functions unless there is more than one calling point. If you split early, the chances that the interface will be wrong are huge, and a much larger refactoring follows.
int cross_block_var;
// First step.
{
int myvar;
}
// Second step.
{
int myvar;
}
Ciro has seen and had to deal with in his lifetime with two projects that had like 3 to 10 git separate Git repositories, all created and maintained by the same small group of developers of the same organization, even though one could not build without the other. Keeping everything in sync was Hell! Why not just have three directories inside a single repository with a single source of truth?
Another important case: Linux should have at least a C standard library, init system, and shell in-tree, like BSD Operating Systems, as mentioned at: Section "Linux".
There are unlisted articles, also show them or only show them.