Levi-Civita symbol as a tensor Updated +Created
It takes as input three vectors, and outputs one real number, the volume. And it is linear on each vector. This perfectly satisfied the definition of a tensor of order (3,0).
Given a basis and a function that return the volume of a parallelepiped given by three vectors , .
Lie algebra of a isometry group Updated +Created
We can almost reach the Lie algebra of any isometry group in a single go. For every in the Lie algebra we must have:
because has to be in the isometry group by definition as shown at Section "Lie algebra of a matrix Lie group".
Then:
so we reach:
With this relation, we can easily determine the Lie algebra of common isometries: