Angular momentum operator Updated +Created
Basically the operators are just analogous to the classical ones e.g. the classical:
becomes:
Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
TODO experiment. Likely Zeeman effect.
Video 1.
Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)
Source.
Bohr-Sommerfeld model Updated +Created
Refinement of the Bohr model that starts to take quantum angular momentum into account in order to explain missing lines that would have been otherwise observed TODO specific example of such line.
They are not observe because they would violate the conservation of angular momentum.
TODO confirm year and paper, Wikipedia points to: zenodo.org/record/1424309#.yotqe3xmjhe
Madelung energy ordering rule Updated +Created
Looking at the energy level of the Schrödinger equation solution for the hydrogen atom, you would guess that for multi-electron atoms that only the principal quantum number would matter, azimuthal quantum number getting filled randomly.
However, orbitals energies for large atoms don't increase in energy like those of hydrogen due to electron-electron interactions.
In particular, the following would not be naively expected:
  • 2s fills up before 2p. From the hydrogen solution, you might guess that they would randomly go into either one as they'd have the same energy
  • in potassium fills up before 3d, even though it has a higher principal quantum number!
This rule is only an approximation, there exist exceptions to the Madelung energy ordering rule.
Magnetic quantum number Updated +Created
Fixed quantum angular momentum in a given direction.
Can range between .
E.g. consider gallium which is 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1:
  • the electrons in s-orbitals such as 1s, 2d, and 3d are , and so the only value for is 0
  • the electrons in p-orbitals such as 2p, 3p and 4p are , and so the possible values for are -1, 0 and 1
  • the electrons in d-orbitals such as 2d are , and so the possible values for are -2, -1, 0 and 1 and 2
The z component of the quantum angular momentum is simply:
so e.g. again for gallium:
  • s-orbitals: necessarily have 0 z angular momentum
  • p-orbitals: have either 0, or z angular momentum
Note that this direction is arbitrary, since for a fixed azimuthal quantum number (and therefore fixed total angular momentum), we can only know one direction for sure. is normally used by convention.
Quantum number Updated +Created
Quantum numbers appear directly in the Schrödinger equation solution for the hydrogen atom.
However, it very cool that they are actually discovered before the Schrödinger equation, and are present in the Bohr model (principal quantum number) and the Bohr-Sommerfeld model (azimuthal quantum number and magnetic quantum number) of the atom. This must be because they observed direct effects of those numbers in some experiments. TODO which experiments.
E.g. The Quantum Story by Jim Baggott (2011) page 34 mentions:
As the various lines in the spectrum were identified with different quantum jumps between different orbits, it was soon discovered that not all the possible jumps were appearing. Some lines were missing. For some reason certain jumps were forbidden. An elaborate scheme of ‘selection rules’ was established by Bohr and Sommerfeld to account for those jumps that were allowed and those that were forbidden.
This refers to forbidden mechanism. TODO concrete example, ideally the first one to be noticed. How can you notice this if the energy depends only on the principal quantum number?
Video 1.
Quantum Numbers, Atomic Orbitals, and Electron configurations by Professor Dave Explains (2015)
Source. He does not say the key words "Eigenvalues of the Schrödinger equation" (Which solve it), but the summary of results is good enough.
Spectroscopic notation Updated +Created
This notation is cool as it gives the spin quantum number, which is important e.g. when talking about hyperfine structure.
But it is a bit crap that the spin is not given simply as but rather mixes up both the azimuthal quantum number and spin. What is the reason?
Zeeman effect Updated +Created
Split in the spectral line when a magnetic field is applied.
Non-anomalous: number of splits matches predictions of the Schrödinger equation about the number of possible states with a given angular momentum. TODO does it make numerical predictions?
Anomalous: evidence of spin.
www.pas.rochester.edu/~blackman/ast104/zeeman-split.html contains the hello world that everyone should know: 2p splits into 3 energy levels, so you see 3 spectral lines from 1s to 2p rather than just one.
p splits into 3, d into 5, f into 7 and so on, i.e. one for each possible azimuthal quantum number.
It also mentions that polarization effects become visible from this: each line is polarized in a different way. TODO more details as in an experiment to observe this.
Video 1.
Experimental physics - IV: 22 - Zeeman effect by Lehrportal Uni Gottingen (2020)
Source.
This one is decent. Uses a cadmium lamp and an etalon on an optical table. They see a more or less clear 3-split in a circular interference pattern,
They filter out all but the transition of interest.
Video 2.
Zeeman Effect - Control light with magnetic fields by Applied Science (2018)
Source. Does not appear to achieve a crystal clear split unfortunately.