Elliptic curve point addition Updated +Created
Elliptic curve point addition is the group operation of an elliptic curve group, i.e. it is a function that takes two points of an elliptic curve as input, and returns a third point of the elliptic curve as its output, while obeying the group axioms.
The operation is defined e.g. at en.wikipedia.org/w/index.php?title=Elliptic_curve_point_multiplication&oldid=1168754060#Point_operations. For example, consider the most common case for two different points different. If the two points are given in coordinates:
then the addition is defined in the general case as:
with some slightly different definitions for point doubling and the identity point.
This definition relies only on operations that we know how to do on arbitrary fields:and it therefore works for elliptic curves defined over any field.
Just remember that:
means:
and that always exists because it is the inverse element, which is guaranteed to exist for multiplication due to the group axioms it obeys.
The group function is usually called elliptic curve point addition, and repeated addition as done for DHKE is called elliptic curve point multiplication.
Polynomial over a ring Updated +Created
The usual definition of a polynomial is over a field as shown at polynomial over a field.
However, there is nothing in the immediate definition that prevents us from having a ring instead, i.e. a field but without the commutative property and inverse elements.
The only thing is that then we would need to differentiate between different orderings of the terms of multivariate polynomial, e.g. the following would all be potentially different terms:
while for a field they would all go into a single term:
so when considering a polynomial over a ring we end up with a lot more more possible terms.
If the ring is a commutative ring however, polynomials do look like proper polynomials: Section "Polynomial over a commutative ring".
Ring (mathematics) Updated +Created
A Ring can be seen as a generalization of a field where:
Addition however has to be commutative and have inverses, i.e. it is an Abelian group.
The simplest example of a ring which is not a full fledged field and with commutative multiplication are the integers. Notably, no inverses exist except for the identity itself and -1. E.g. the inverse of 2 would be 1/2 which is not in the set. More specifically, the integers are a commutative ring.
A polynomial ring is another example with the same properties as the integers.
The simplest non-commutative, non-division is is the set of all 2x2 matrices of real numbers:
  • we know that 2x2 matrix multiplication is non-commutative in general
  • some 2x2 matrices have a multiplicative inverse, but others don't
Note that is not a ring because you can by addition reach the zero matrix.