Linear map of two variables.
More formally, given 3 vector spaces X, Y, Z over a single field, a bilinear map is a function from:that is linear on the first two arguments from X and Y, i.e.:Note that the definition only makes sense if all three vector spaces are over the same field, because linearity can mix up each of them.
The most important example by far is the dot product from , which is more specifically also a symmetric bilinear form.
Invertible matrices. Or if you think a bit more generally, an invertible linear map.
Non-invertible are excluded "because" otherwise it would not form a group (every element must have an inverse). This is therefore the largest possible group under matrix multiplication, other matrix multiplication groups being subgroups of it.
The term is not very clear, as it could either mean:
- a real number function whose graph is a line, i.e.:or for higher dimensions, a hyperplane:
- a linear map. Note that the above linear functions are not linear maps unless (known as the homogeneous case), because e.g.:butFor this reason, it is better never to refer to linear maps as linear functions.
Examples:
- a 2x2 matrix can represent a linear map from to , so which is a linear operator
- the derivative is a linear map from to , so which is also a linear operator
Since a matrix can be seen as a linear map , the product of two matrices can be seen as the composition of two linear maps:One cool thing about linear functions is that we can easily pre-calculate this product only once to obtain a new matrix, and so we don't have to do both multiplications separately each time.
Basically, a "representation" means associating each group element as an invertible matrices, i.e. a matrix in (possibly some subset of) , that has the same properties as the group.
Or in other words, associating to the more abstract notion of a group more concrete objects with which we are familiar (e.g. a matrix).
Each such matrix then represents one specific element of the group.
This is basically what everyone does (or should do!) when starting to study Lie groups: we start looking at matrix Lie groups, which are very concrete.
Or more precisely, mapping each group element to a linear map over some vector field (which can be represented by a matrix infinite dimension), in a way that respects the group operations:
As shown at Physics from Symmetry by Jakob Schwichtenberg (2015)
- page 51, a representation is not unique, we can even use matrices of different dimensions to represent the same group
- 3.6 classifies the representations of . There is only one possibility per dimension!
- 3.7 "The Lorentz Group O(1,3)" mentions that even for a "simple" group such as the Lorentz group, not all representations can be described in terms of matrices, and that we can construct such representations with the help of Lie group theory, and that they have fundamental physical application
Bibliography:
- www.youtube.com/watch?v=9rDzaKASMTM "RT1: Representation Theory Basics" by MathDoctorBob (2011). Too much theory, give me the motivation!
- www.quantamagazine.org/the-useless-perspective-that-transformed-mathematics-20200609 The "Useless" Perspective That Transformed Mathematics by Quanta Magazine (2020). Maybe there is something in there amidst the "the reader might not know what a matrix is" stuff.