Allow us to determine with good approximation in a multi-electron atom which electron configuration have more energy. It is a bit like the Aufbau principle, but at a finer resolution.
Note that this is not trivial since there is no explicit solution to the Schrödinger equation for multi-electron atoms like there is for hydrogen.
For example, consider carbon which has electron configuration 1s2 2s2 2p2.
If we were to populate the 3 p-orbitals with two electrons with spins either up or down, which has more energy? E.g. of the following two:
m_L -1 0 1
u_ u_ __
u_ __ u_
__ ud __
Fixed quantum angular momentum in a given direction.
Can range between .
E.g. consider gallium which is 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1:
- the electrons in s-orbitals such as 1s, 2d, and 3d are , and so the only value for is 0
- the electrons in p-orbitals such as 2p, 3p and 4p are , and so the possible values for are -1, 0 and 1
- the electrons in d-orbitals such as 2d are , and so the possible values for are -2, -1, 0 and 1 and 2
The z component of the quantum angular momentum is simply:so e.g. again for gallium:
- s-orbitals: necessarily have 0 z angular momentum
- p-orbitals: have either 0, or z angular momentum
Note that this direction is arbitrary, since for a fixed azimuthal quantum number (and therefore fixed total angular momentum), we can only know one direction for sure. is normally used by convention.