Breeder reactor Updated +Created
A nuclear reactor made to produce specific isotopes rather than just consume fissile material to produce electrical power. The most notably application being to produce Plutonium-239 for nuclear weapons from Uranium-238 being irradiated from Uranium-235-created fission.
Gun-type fission weapons don't work with plutonium Updated +Created
Gun-type fission weapons don't work with Plutonium-239 because of the presence of Plutonium-240 as an impurity which leads to fizzle.
Plutonium-240 Updated +Created
This isotope shows up as an inevitable contaminant in Plutonium-239 for nuclear weapons, because it emits neutrons too fast and makes it harder to assemble the critical mass without fizzle.
Wikipedia explains that Pu-240 is formed by Pu-239 Neutron capture:
About 62% to 73% of the time when 239Pu captures a neutron, it undergoes fission; the remainder of the time, it forms 240Pu.
so its presence is inevitable.
Weapon grade Plutonium is cheaper than weapon grade Uranium Updated +Created
Because you can generate plutonium-239 from uranium-238 in a breeder reactor, and then separate the plutonium-239 from the Uranium simply by using chemistry methods because you've created an element with different valence electrons.
Isn't it somewhat funny that it is easier to purify a synthetic element than a naturally occurring one?
Weapons-grade nuclear material Updated +Created
For nuclear weapons you need a certain level of isotope purity of either plutonium-239 or uranium-235.
And the easiest way by far to achieve this purity is to produce plutonium-239 in a breeder reactor, which allows you to get it out with much cheaper chemical processes rather than costly isotope separation methods.
fissilematerials.org/ summarizes stockpiles and production status. 20224 Archive.