Chevalley groups Updated +Created
This was the first infinite family of simple groups discovered after the simple cyclic groups and alternating groups. The first case discovered was by Galois. You should understand that one first.
Classification of finite groups Updated +Created
As shown in Video "Simple Groups - Abstract Algebra by Socratica (2018)", this can be split up into two steps:This split is sometimes called the "Jordan-Hölder program" in reference to the authors of the jordan-Holder Theorem.
Good lists to start playing with:
It is generally believed that no such classification is possible in general beyond the simple groups.
Cycle notation Updated +Created
A concise to describe a specific permutation.
A permutation group can then be described in terms of the generating set of a group of specific elements given in cycle notation.
E.g. en.wikipedia.org/w/index.php?title=Mathieu_group&oldid=1034060469#Permutation_groups mentions that the Mathieu group is generated by three elements:
  • (0123456789a)
  • (0b)(1a)(25)(37)(48)(69)
  • (26a7)(3945)
which feels quite compact for a simple group with 95040 elements, doesn't it!
PSL(2,7) Updated +Created
The second smallest non-Abelian finite simple group after the alternating group of degree 5.
Semidirect product Updated +Created
As per en.wikipedia.org/w/index.php?title=Semidirect_product&oldid=1040813965#Properties, unlike the Direct product, the semidirect product of two goups is neither unique, nor does it always exist, and there is no known algorithmic way way to tell if one exists or not.
This is because reaching the "output" of the semidirect produt of two groups requires extra non-obvious information that might not exist. This is because the semi-direct product is based on the product of group subsets. So you start with two small and completely independent groups, and it is not obvious how to join them up, i.e. how to define the group operation of the product group that is compatible with that of the two smaller input groups. Contrast this with the Direct product, where the composition is simple: just use the group operation of each group on either side.
Product of group subsets
So in other words, it is not a function like the Direct product. The semidiret product is therefore more like a property of three groups.
The semidirect product is more general than the direct product of groups when thinking about the group extension problem, because with the direct product of groups, both subgroups of the larger group are necessarily also normal (trivial projection group homomorphism on either side), while for the semidirect product, only one of them does.
Conversely, en.wikipedia.org/w/index.php?title=Semidirect_product&oldid=1040813965 explains that if , and besides the implied requirement that N is normal, H is also normal, then .
Smallest example: where is a dihedral group and are cyclic groups. (the rotation) is a normal subgroup of , but (the flip) is not.
Note that with the Direct product instead we get and not , i.e. as per the direct product of two cyclic groups of coprime order is another cyclic group.
TODO:
  • why does one of the groups have to be normal in the definition?
  • what is the smallest example of a non-simple group that is neither a direct nor a semi-direct product of any two other groups?