The different only shows up for field, not with particles. For fields, there are two types of changes that we can make that can keep the Lagrangian unchanged as mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) chapter "4.5.2 Noether's Theorem for Field Theories - Spacetime":
- spacetime symmetry: act with the Poincaré group on the Four-vector spacetime inputs of the field itself, i.e. transforming into
- internal symmetry: act on the output of the field, i.e.:
From defining properties of elementary particles:
- spacetime:
- internal
From the spacetime theory alone, we can derive the Lagrangian for the free theories for each spin:Then the internal symmetries are what add the interaction part of the Lagrangian, which then completes the Standard Model Lagrangian.
I like relativistic quantum mechanics.
Best mathematical explanation: Section "Spin comes naturally when adding relativity to quantum mechanics".
Physics from Symmetry by Jakob Schwichtenberg (2015) chapter 3.9 "Elementary particles" has an amazing summary of the preceding chapters the spin value has a relation to the representations of the Lorentz group, which encodes the spacetime symmetry that each particle observes. These symmetries can be characterized by small integer numbers:
- spin 0: representation
- spin half: representation
- spin 1: representationAs usual, we don't know why there aren't elementary particles with other spins, as we could construct them.