Quantum entanglement is often called spooky/surprising/unintuitive, but they key question is to understand why.
To understand that, you have to understand why it is fundamentally impossible for the entangled particle pair be in a predefined state according to experiments done e.g. where one is deterministically yes and the other deterministically down.
In other words, why local hidden-variable theory is not valid.
How to generate entangled particles:
- particle decay, notably pair production
- for photons, notably: spontaneous parametric down-conversion, e.g.: www.youtube.com/watch?v=tn1sEaw1K2k "Shanni Prutchi Construction of an Entangled Photon Source" by HACKADAY (2015). Estimatd price: 5000 USD.
This experiment seems to be really hard to do, and so there aren't many super clear demonstration videos with full experimental setup description out there unfortunately.
Wikipedia has a good summary at: en.wikipedia.org/wiki/Double-slit_experiment#Overview
For single-photon non-double-slit experiments see: single photon production and detection experiments. Those are basically a pre-requisite to this.
photon experiments:
- aapt.scitation.org/doi/full/10.1119/1.4955173 "Video recording true single-photon double-slit interference" by Aspden and Padgetta (2016). Abstract says using spontaneous parametric down-conversion detection of the second photon to know when to turn the camera on
electron experiments: single electron double slit experiment.
Non-elementary particle:
- 2019-10-08: 25,000 Daltons
- interactive.quantumnano.at/letsgo/ awesome interactive demo that allows you to control many parameters on a lab. Written in Flash unfortunately, in 2015... what a lack of future proofing!
You can't get more direct than this in terms of proving that photons exist!
The particular case of the double-slit experiment will be discussed at: single particle double slit experiment.
Production:
Detectors are generally called photomultipliers:
Bibliography:
- iopscience.iop.org/book/978-0-7503-3063-3.pdf Quantum Mechanics in the Single Photon Laboratory by Waseem, Ilahi and Anwar (2020)
Phenomena that produces photons in pairs as it passes through a certain type of crystal.
You can then detect one of the photons, and when you do you know that the other one is there as well and ready to be used. two photon interference experiment comes to mind, which is the basis of photonic quantum computer, where you need two photons to be produced at the exact same time to produce quantum entanglement.