The Klein-Gordon equation directly uses a more naive relativistic energy guess of $p_{2}+m_{2}$ squared.

But since this is quantum mechanics, we feel like making $p$ into the "momentum operator", just like in the Schrödinger equation.

But we don't really know how to apply the momentum operator twice, because it is a gradient, so the first application goes from a scalar field to the vector field, and the second one...

So we just cheat and try to use the laplace operator instead because there's some squares on it:

$H=∇_{2}+m_{2}$

But then, we have to avoid taking the square root to reach a first derivative in time, because we don't know how to take the square root of that operator expression.

So the Klein-Gordon equation just takes the approach of using this squared Hamiltonian instead.

Since it is a Hamiltonian, and comparing it to the Schrödinger equation which looks like:
taking the Hamiltonian twice leads to:

$Hψ=i∂t∂ψ $

$H_{2}ψ=−∂_{2}t∂_{2}ψ $

We can contrast this with the Dirac equation, which instead attempts to explicitly construct an operator which squared coincides with the relativistic formula: derivation of the Dirac equation.

## Discussion (0)

Sign up or sign in create discussions.There are no discussions about this article yet.