Published by Werner Heisenberg in 1925-07-25 as quantum mechanical re-interpretation of kinematic and mechanical relations by Heisenberg (1925), it offered the first general formulation of quantum mechanics.

It is apparently more closely related to the ladder operator method, which is a more algebraic than the more analytical Schrödinger equation.

It appears that this formulation makes the importance of the Poisson bracket clear, and explains why physicists are so obsessed with talking about position and momentum space. This point of view also apparently makes it clearer that quantum mechanics can be seen as a generalization of classical mechanics through the Hamiltonian.

QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) mentions however that relativistic quantum mechanics broke that analogy, because some 2x2 matrix had a different form, TODO find that again.

Inward Bound by Abraham Pais (1988) chapter 12 "Quantum mechanics, an essay" part (c) "A chronology" has some ultra brief, but worthwhile mentions of matrix mechanics and the commutator.

This Heisenberg's breakthrough paper on matrix mechanics which later led to the Schrödinger equation, see also: history of quantum mechanics.

Published on the Zeitschrift für Physik volume 33 page pages 879-893, link.springer.com/article/10.1007%2FBF01328377

Modern overview: www.mat.unimi.it/users/galgani/arch/heisenberg25amer_j_phys.pdf

Basically the same as matrix mechanics it seems, just a bit more generalized.