Figure 1. xkcd 435: Fields arranged by purity. Source.
This due is a beast, he knows both the physics and the history of physics, and has the patience to teach it. What a blessing: Section "How to teach and learn physics".
Figure 1. Source.
Video 1. Alain Aspect in Quantum entanglement Documentary (1985) Source. The moustache and broken Englisn were already his trademarks back then!!! Also cool to get a glimpse of his lab, and good schematics of the experiment. TODO exact lab location? Documentary says in Paris, but where?
Doctoral advisor: Murray Gell-Mann.
A charismatic, perfect-English-accent (Received Pronunciation) physicist from University of Cambridge, specializing in quantum field theory.
He has done several "vulgarization" lectures, some of which could be better called undergrad appetizers rather, a notable example being Video "Quantum Fields: The Real Building Blocks of the Universe by David Tong (2017)" for the prestigious Royal Institution, but remains a hardcore researcher: scholar.google.com/citations?hl=en&user=felFiY4AAAAJ&view_op=list_works&sortby=pubdate. Lots of open access publications BTW, so kudos.
The amount of lecture notes on his website looks really impressive: www.damtp.cam.ac.uk/user/tong/teaching.html, he looks like a good educator.
David has also shown some interest in applications of high energy mathematical ideas to condensed matter, e.g. links between the renormalization group and phase transition phenomena. TODO there was a YouTube video about that, find it and link here.
Ciro Santilli wonders if his family is of East Asian, origin and if he can still speak any east asian languages. "Tong" is of course a transcription of several major Chinese surnames and from looks he could be mixed blood, but as mentioned at www.ancestry.co.uk/name-origin?surname=tong it can also be an English "metonymic occupational name for a maker or user of tongs". After staring at his picture for a while Ciro is going with the maker of tongs theory initially.
This dude is generally viewed as a God. His incredibly understated demeanour and tone certainly help.
Video 1. Unintentional ASMR | Sleepiest Interview Ever | Edward Witten. Source. The title of this reupload is just epic. Edward telling his biography.
Video 1. Witnessing the test explosion Edward Teller interview by Web of Stories (1996) Source.
Video 2. Edward Teller, An Early Time. Source. Comissioned by the Los Alamos National Laboratory in 1979. Producer: Mario Balibreraa.
Died of cancer at age 53. Ciro Santilli just can't help but speculate that it is linked to radioactivity exposure.
Video 1. The World Of Enrico Fermi by Harvard Project Physics (1970) Source.
This paper appears to calculate the Schrödinger equation solution for the hydrogen atom.
TODO is this the original paper on the Schrödinger equation?
Published on Annalen der Physik in 1926.
Open access in German at: onlinelibrary.wiley.com/doi/10.1002/andp.19263840404 which gives volume 384, Issue 4, Pages 361-376. Kudos to Wiley for that. E.g. Nature did not have similar policies as of 2023.
This paper may have fallen into the public domain in the US in 2022! On the Internet Archive we can see scans of the journal that contains it at: ia903403.us.archive.org/29/items/sim_annalen-der-physik_1926_79_contents/sim_annalen-der-physik_1926_79_contents.pdf. Ciro Santilli extracted just the paper to: commons.wikimedia.org/w/index.php?title=File%3AQuantisierung_als_Eigenwertproblem.pdf. It is not as well processed as the Wiley one, but it is of 100% guaranteed clean public domain provenance! TODO: hmmm, it may be public domain in the USA but not Germany, where 70 years after author deaths rules, and Schrodinger died in 1961, so it may be up to 2031 in that country... messy stuff. There's also the question of wether copyright is was tranferred to AdP at publication or not.
Contains formulas such as the Schrödinger equation solution for the hydrogen atom (1''):
where:
  • In order for there to be numerical agreement, must have the value
  • , are the charge and mass of the electron
English translation of papers that include the original Quantization as an Eigenvalue Problem by Schrödinger (1926).
Published on Nature at www.nature.com/articles/122990a0 and therefore still paywalled there as of 2023, it's ridiculous.
In 2024 it will fall into the public domain in the US.
Ciro's theory for his disappearance is that he became a Majorana fermion and flew off into the infinite.
Ciro Santilli's admiration for Dyson goes beyond his "unify all the things approach", which Ciro loves, but also extends to the way he talks and the things he says. Dyson is one of Ciro's favorite physicist.
Besides this, he was also very idealistic compassionate, and supported a peaceful resolution until World War II with United Kingdom was basically ineviatble. Note that this was a strategic mistake.
Dyson is "hawk nosed" as mentioned in Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "Dyson". But he wasn't when he was young, see e.g. i2.wp.com/www.brainpickings.org/wp-content/uploads/2016/03/freemandyson_child-1.jpg?resize=768%2C1064&ssl=1 It sems that his nose just never stopped growing after puberty.
He also has some fun stories, like him practicing night climbing while at Cambridge University, and having walked from Cambridge to London (~86km!) in a day with his wheelchair bound friend.
Ciro Santilli feels that the label child prodigy applies even more so to him than to Feynman and Julian Schwinger.
Bibliography:
The amount of detail in which he remembers all that happened is astounding. Not too different from the Murray Gell-Mann interview in that aspect.
Head of the theoretical division at the Los Alamos Laboratory during the Manhattan Project.
Richard Feynman was working under him there, and was promoted to team lead by him because Richard impressed Hans.
He was also the person under which Freeman Dyson was originally under when he moved from the United Kingdom to the United States.
And Hans also impressed Feynman, both were problem solvers, and liked solving mental arithmetic and numerical analysis.
This relationship is what brought Feynman to Cornell University after World War II, Hans' institution, which is where Feynman did the main part of his Nobel prize winning work on quantum electrodynamics.
Hans must have been the perfect PhD advisor. He's always smiling, and he seemed so approachable. And he was incredibly capable, notably in his calculation skills, which were much more important in those pre-computer days.
WTF is wrong with that family???
Is about Maxwell's equations in curved spacetime, and notably introduces gauge theory.
Figure 1. Source.
Video 1. Leo Szilard: The Genius Behind the Bomb. Source. 1992. TODO an external link to the production? Producers credited at end: Helen Weiss and Alain Jehlen. As indicated at: archive.org/details/TheGeniusBehindtheBomb it was apparently produced by WGBH, public radio station from Boston.
He was a leading figure at the MIT Radiation Laboratory, and later he was head at the Columbia University laboratory that carried out the crucial Lamb-Retherford experiment and the anomalous magnetic dipole moment of the electron published at the Magnetic Moment of the Electron by Kusch and Foley (1948) using related techniques.
This is a good book. It is rather short, very direct, which is a good thing. At some points it is slightly too direct, but to a large extent it gets it right.
The main goal of the book is to basically to build the Standard Model Lagrangian from only initial symmetry considerations, notably the Poincaré group + internal symmetries.
The book doesn't really show how to extract numbers from that Lagrangian, but perhaps that can be pardoned, do one thing and do it well.
DokuWiki about physics, mostly/fully written by Jakob Schwichtenberg and therefore focusing on particle physics, although registration might be open to all.
This seems like a cool dude. Besides a hardcore scientist, he also made many important contributions to the French education and research system.
Richard Feynman's mentor at Princeton University, and notable contributor to his development of quantum electrodynamics.
Worked with Niels Bohr at one point.
Web of Stories interview (1996): www.youtube.com/playlist?list=PLVV0r6CmEsFzVlqiUh95Q881umWUPjQbB. He's a bit slow, you wonder if he's going to continute or not! One wonders if it is because of age, or he's always been like that.
Video 1. The Story of John Bardeen at the University of Illinois (2010) Source.
Video 1. Lillian Hoddeson talking about Bardeen. Source. From Video "The Story of John Bardeen at the University of Illinois (2010)". She's actually good looking!
This is the one Ciro Santilli envies the most, because he has such a great overlap with Ciro's interests, e.g.:
Video 1. John von Neuman - a documentary by the Mathematical Association of America (1966) Source. Some good testimonies. Some boring.
Extremely precocious, borderline child prodigy, he was reading Dirac at 13-14 from the library.
He started working at night and sleeping during the moring/early afternoon while he was at university.
He was the type of guy that was so good that he didn't really have to follow the university rules very much. He would get into trouble for not following some stupid requirement, but he was so good that they would just let him get away with it.
Besides quantum electrodynamics, Julian worked on radar at the Rad Lab during World War II, unlike most other top physicists who went to Los Alamos Laboratory to work on the atomic bomb, and he made important contributions there on calculating the best shape of the parts and so on.
He was known for being very formal mathematically and sometimes hard to understand, in stark contrast to Feynman which was much more lose and understandable, especially after Freeman Dyson translated him to the masses.
However, QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) does emphacise that he was actually also very practical in the sense that he always aimed to obtain definite numbers out of his calculations, and that was not only the case for the Lamb shift.
The bald confident chilled out particle physics guy from Stanford University!
Well known popular science character. He just looks futuristic and wraps stuff in exciting empty words. When he shows up, you won't be learning much.
The way this dude speaks. He exhales incredible intelligence!!!
In the interviews you can see that he pronounces names in all languages amazingly, making acute effort to do so, to the point of being notable. His passion for linguistics is actually mentioned on Genius: Richard Feynman and Modern Physics by James Gleick (1994).
Maybe this obsession is partly due to his name which no English speaking person knows how to pronounce from the writing.
This passion also led in part for his names to some physics terminology he worked on winning out over alternatives by his collaborators, most notably in the case of the naming of the quark.
quoteinvestigator.com/2017/09/25/progress/ on Quote Investigator says it appeared in 1948. Can't easily check, but will believe it for now.
This section refers just to the translation of Scientific autobiography by Max Planck (1948).
The Planck's law paper.
Figure 1. Source.
Figure 1. Source.
One of the leading figures of the early development of quantum electrodynamics.
Figure 1. Source.
Eccentric nerdy slow speaking physicist mostly based in University of Cambridge.
Created the Dirac equation, what else do you need to know?!
Figure 1. Source.
QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) chapter 1.3 "P.A.M. Dirac and the Birth of Quantum Electrodynamics" quotes Dirac saying how being at high school during World War I was an advantage, since all slightly older boys were being sent to war, and so the younger kids were made advance as fast as they could through subjects. Exactly the type of thing Ciro Santilli wants to achieve with OurBigBook.com, but without the need for a world war hopefully.
Dirac was a staunch atheist having said during the Fifth Solvay Conference (1927)[ref]:
If we are honest - and scientists have to be - we must admit that religion is a jumble of false assertions, with no basis in reality. The very idea of God is a product of the human imagination. It is quite understandable why primitive people, who were so much more exposed to the overpowering forces of nature than we are today, should have personified these forces in fear and trembling. But nowadays, when we understand so many natural processes, we have no need for such solutions. I can't for the life of me see how the postulate of an Almighty God helps us in any way. What I do see is that this assumption leads to such unproductive questions as why God allows so much misery and injustice, the exploitation of the poor by the rich and all the other horrors He might have prevented. If religion is still being taught, it is by no means because its ideas still convince us, but simply because some of us want to keep the lower classes quiet. Quiet people are much easier to govern than clamorous and dissatisfied ones. They are also much easier to exploit. Religion is a kind of opium that allows a nation to lull itself into wishful dreams and so forget the injustices that are being perpetrated against the people. Hence the close alliance between those two great political forces, the State and the Church. Both need the illusion that a kindly God rewards - in heaven if not on earth - all those who have not risen up against injustice, who have done their duty quietly and uncomplainingly. That is precisely why the honest assertion that God is a mere product of the human imagination is branded as the worst of all mortal sins.
Video 1. Paul Dirac and the religion of mathematical beauty by Royal Society (2013) Source.
Some of Feynman's key characteristics are:
  • obsession with understanding the experiments well, see also Section "How to teach and learn physics"
  • when doing more mathematical stuff, analogous obsession about starting with a concrete example and then generalizing that into the theory
  • liked to teach others. At Surely You're Joking, Mr. Feynman for example he mentions that one key problem of the Institute for Advanced Study is that they didn't have to teach, and besides that making you feel useless when were not having new ideas, it is also the case that student's questions often inspire you to look again in some direction which sometimes happens to be profitable
    He hated however mentoring others one to one, because almost everyone was too stupid for him
  • interest in other natural sciences, and also random art and culture (and especially if it involves pretty women)
Some non-Physics related ones, mostly highlighted at Genius: Richard Feynman and Modern Physics by James Gleick (1994):
Even Apple thinks so according to their Think different campaign: www.feynman.com/fun/think-different/
Feynman was apparently seriously interested/amused by computer:
Video 1. Murray Gell-Mann talks about Richard Feynman's intentional anecdote creation. Source. TODO original interviewer, date and source. Very amusing, he tells how Feynman wouldn't brush his teeth, or purposefully forget to wear jacket and tie when going to the faculty canteen where it was required and so he would use ugly emergency jacket the canteen offered to anyone who had forgotten theirs.
Video 2. Murray Gell-Mann talks about Feynman's partons by Web of Stories (1997) Source. Listener is likely this Geoffrey West. Key quote:
Feynman of course, as usual, put it in a form so that the common people could use it, and experimentalists all over the world now thought they understood things because Feynman had put it in such simple language for them.
Two official websites?
In 1948 he published his reworking of classical quantum mechanics in terms of the path integral formulation: journals.aps.org/rmp/abstract/10.1103/RevModPhys.20.367 Space Time Approach to nonrelativistic quantum mechanics (paywalled 2021)
Feynman's first wife, previously his local-high school-days darling. Feynman was like an reversed Stephen Hawking: he married his wife knowing that she had a serious illness, while Hawking's wife married him knowing that as well. Except that in Feynman's case, the disease outcome (tuberculosis) was much more uncertain, and she tragically died in 1945 much earlier while Feynman was at Los Alamos Laboratory, while Hawking, despite his decline, lived much longer.
Feynman first noticed Arline on the beaches on the region of his home in Far Rockaway, in the Queens, New York, near Long Beach. She lived a bit further inland in Cedarhurst. Arline was beautiful and boys competed for her, but Richard persisted, stalking her at an after-school social league sponsored by the local Synagogue and joining an art class she went to, until he eventually won it out. The region was highly Jewish, and both were from Jewish families, as also suggested by their family names.
Reading about her death e.g. at Genius: Richard Feynman and Modern Physics by James Gleick (1994) is a major tearjerker, it's just too horrible. The book mentions on chapter "The Last Springtime" that at last, during the last months of her life, after much hesitation, they did fuck in the sanatorium Arline where was staying at in Albuquerque, the nearest major city to Los Alamos (154 km), despite the risk of Feynman being infected, which would be particularly serious given that Feynman would be in constant contact with students and possibly infect others as part of his career as a researcher/teacher. Feynman would visit her on weekends by bus, and stay in Los Alamos during the week.
Arline finally died on June 16th 1945, exactly one month before the Trinity nuclear test was carried out. The atomic bombings of Hiroshima and Nagasaki were a little later on 6 and 9 of August 1945.
On one of his last trips to Oak Ridge town late 1945, after her death, Feynman walked past a shop window and saw a pretty dress. He thought to himself, "Arline would have liked that", and the reminder made him cry for the first time after Arline's death.
It is even sadder to think that the first antibiotics for tuberculosis, streptomycin, finished its first major clinical trial at around 1948, not long after her death.
Figure 1. Richard Feynman with his first wife Arline Greenbaum. Source. TODO date, location, original source.
Figure 2. Richard Feynman sitting with his first wife Arline Greenbaum reading. Source. TODO date, location, original source. Seems like in a hospital.
Video 1. Abacus scene from the film Infinity (1996) Source.
The film suggests that Feynman and Arline fucked a lot before the final Los Alamos fuck, that fuck story from book being only "fuck after tuberculosis diagnosis", after which they had to slow it down a bit.
This is likely true given how long they had been together for at that point. Ciro Santilli is such a pure soul for not having thought that! They were not very conservative at all those two.
Also their wedding got slowed down because there was a clause in Feynman's scholarship at Princeton University stating that the recipient could not be married, those were different times altogether.
Good film, it feels quite realistic.
It is a shame that they tried to include some particularly interesting stories but didn't have the time to develop them, e.g. Feynman explaining to the high school interns what they were actually doing. These are referred to only in passing, and likely won't mean anything to someone who hasn't read the book.
The film settings are particularly good, and give what feels like an authentic view of the times. Particularly memorable are the Indian caves shown the film. TODO name? Possibly Puye Cliff Dwellings. Puye apparently appears prominently up on another film about Los Alamos: The Atomic city (1952). It is relatively close to Los Alamos, about 30 km away.
The title is presumably a reference to infinities in quantum field theory? Or just to the infinity of love etc.? But anyways, the infinities in quantum field theory theory come to mind if you are into this kind of stuff and is sad because that work started after the war.
https://upload.wikimedia.org/wikipedia/en/4/46/Infinity_film_poster.jpg
Video 1. Infinity Trailer (1996) Source.
Feynman became a terrible womanizer after his first wife Arline Greenbaum died, involving himself with several married women, and leading to at least two abortions according to Genius: Richard Feynman and Modern Physics by James Gleick (1994).
Ciro Santilli likes to think that he is quite liberal and not a strict follower of Christian morals, but this one shocked him slightly even. Feynman could be a God, but he could also be a dick sometimes.
One particular case that stuck to Ciro Santilli's mind, partly because he is Brazilian, is when Feynman was in Brazil, he had a girlfriend called Clotilde that called him "Ricardinho", which means "Little Richard"; -inho is a diminutive suffix in Portuguese, and also indicates affection. At some point he even promised to take her back to the United States, but didn't in the end, and instead came back and married his second wife in marriage that soon failed.
Richard's third and final wife, Gweneth Howarth, seemed a good match for him though. When they started courting, she made it very clear that Feynman should decide if he wanted her or not soon, because she had other options available and being actively tested. Fight fire with fire.
Video 1. My brother, Richard: How he came to be so smart interview with Joan Feynman by Web of Stories (2019) Source. Ah, shame to see Joan so old. Some good stories. The tiles game thing was not mentioned in Genius: Richard Feynman and Modern Physics by James Gleick (1994) I think.
From Surely You're Joking, Mr. Feynman chapter O Americano, Outra Vez!:
The people from the airlines were somewhat bored with their lives, strangely enough, and at night they would often go to bars to drink. I liked them all, and in order to be sociable, I would go with them to the bar to have a few drinks, several nights a week.
One day, about 3:30 in the afternoon, I was walking along the sidewalk opposite the beach at Copacabana past a bar. I suddenly got this treMENdous, strong feeling: "That's just what I want; that'll fit just right. I'd just love to have a drink right now!"
I started to walk into the bar, and I suddenly thought to myself, "Wait a minute! It's the middle of the afternoon. There's nobody here, There's no social reason to drink. Why do you have such a terribly strong feeling that you have to have a drink?" - and I got scared.
I never drank ever again, since then. I suppose I really wasn't in any danger, because I found it very easy to stop. But that strong feeling that I didn't understand frightened me. You see, I get such fun out of thinking that I don't want to destroy this most pleasant machine that makes life such a big kick. It's the same reason that, later on, I was reluctant to try experiments with LSD in spite of my curiosity about hallucinations.
One notable drug early teens Ciro consumed was Magic: The Gathering, see also: Section "Magic: The Gathering is addictive".
The mantra of the computer simulation engineer.
The first key paper to his approach to quantum electrodynamics apparently.
Published on Physical Review 76.769.
This is a good book.
It has some overlap with Surely You're Joking, Mr. Feynman, which it likely takes as primary sources of some stories.
However, while Surely goes into a lot of detail of each event, this book paints a more cohesive and global picture of things.
In terms of hard physics/mathematics, this book takes the approach of spending a few paragraphs in some chapters describing in high level terms some of the key ideas, which is a good compromise. It does sometime fall into the sin of to talk about something without giving the real name to not scare off the audience, but it does give a lot of names, notably it talks a lot about Lagrangian mechanics. And it goes into more details than Surely in any case.