Numerical solution:
1038733707Programs:
A naive
T in Python is:from collections import deque
def T(a: int, b: int, N: int) -> int:
total = a
q = deque([a] * (a - 1))
is_a = False
for i in range(N - 1):
cur = q.popleft()
total += cur
q.extend([a if is_a else b] * cur)
is_a = not is_a
return total
assert T(2, 3, 10) == 25
assert T(4, 2, 10**4) == 30004
assert T(5, 8, 10**6) == 649987122332223332233 which has 14 digits.Maybe if
T is optimized enough, then we can just bruteforce over the ~40k possible sum ranges 2 to 223. 1 second would mean 14 hours to do them all, so bruteforce but doable. Otherwise another optimization step may be needed at that level as well: one wonders if multiple sums can be factored out, or if the modularity can of the answer can help in a meaningful way. The first solver was ecnerwala using C/C++ in 1 hour, so there must be another insight missing, unless they have access to a supercomputer.The first idea that comes to mind to try and optimize
T is that this is a dynamic programming, but then the question is what is the recurrence relation.The sequence appears to be a generalization of the Kolakoski sequence but to numbers other than 1 and 2, also known as the Generalized Kolakoski sequence.
maths-people.anu.edu.au/~brent/pd/Kolakoski-ACCMCC.pdf "A fast algorithm for the Kolakoski sequence" might provide the solution, the paper says:and provides exactly a recurrence relation and a dynamic programming approach.
www.reddit.com/r/dailyprogrammer/comments/8df7sm/20180419_challenge_357_intermediate_kolakoski/ might offer some reference implementations. It references a longer slide by Brent: maths-people.anu.edu.au/~brent/pd/Kolakoski-UNSW.pdf
www.reddit.com/r/algorithms/comments/8cv3se/kolakoski_sequence/ asks for an implementation but no one gave anything. Dupe question: math.stackexchange.com/questions/2740997/kolakoski-sequence contains an answer with Python and Rust code but just for the original 1,2 case.
github.com/runbobby/Kolakoski has some C++ code but it is not well documented so it's not immediately easy to understand what it actually does. It does appear to consider the m n case however.
Bibligraphy:
- pubs.sciepub.com/tjant/5/4/4/index.html Some Formulas for the Generalized Kolakoski Sequence Kol(a, b) by Abdallah Hammam. Maybe these identities could be useful.
Articles by others on the same topic
There are currently no matching articles.