where:
- is the electromagnetic tensor
Note that this is the sum of the:Note that the relationship between and is not explicit. However, if we knew what type of particle we were talking about, e.g. electron, then the knowledge of psi would also give the charge distribution and therefore
- Dirac Lagrangian, which only describes the "inertia of bodies" part of the equation
- the electromagnetic interaction term , which describes term describes forces
As mentioned at the beginning of Quantum Field Theory lecture notes by David Tong (2007):
- by "Lagrangian" we mean Lagrangian density
- the generalized coordinates of the Lagrangian are fields
Like the rest of the Standard Model Lagrangian, this can be split into two parts:
- spacetime symmetry: reaches the derivation of the Dirac equation, but has no interactions
- add the internal symmetry to add interactions, which reaches the full equation
Articles by others on the same topic
There are currently no matching articles.