Magnet school by Ciro Santilli 35 Updated +Created
Space exploration by Ciro Santilli 35 Updated +Created
Celestron by Ciro Santilli 35 Updated +Created
Matrix similarity by Ciro Santilli 35 Updated +Created
Education as a system of indoctrination by Ciro Santilli 35 Updated +Created
Whenever Ciro Santilli walks in front of a school and sees the tall gates it makes him sad. Maybe 8 year olds need gates. But do we need to protect 15 year olds like that? Students should be going out to see the world, both good and evil not hiding from it! We should instead be guiding them to the world. But instead, we are locking them up in brainwashing centers.
Video "The Purpose of Education by Noam Chomsky (2012)" puts it well, education can be either be:
He has spoken about that infinitely, e.g. from when he was thin: www.youtube.com/watch?v=JVqMAlgAnlo
Bibliography:
Muon tomography by Ciro Santilli 35 Updated +Created
K-12 by Ciro Santilli 35 Updated +Created
Electron holography by Ciro Santilli 35 Updated +Created
E91 by Ciro Santilli 35 Updated +Created
Requires entangled particles, unlike BB84 which does not.
Quantum key distribution protocol by Ciro Santilli 35 Updated +Created
Post-quantum cryptography company by Ciro Santilli 35 Updated +Created
ZX-calculus biliography by Ciro Santilli 35 Updated +Created
qiskit.transpile() by Ciro Santilli 35 Updated +Created
This function does quantum compilation. Shown e.g. at qiskit/qft.py.
Cirq by Ciro Santilli 35 Updated +Created
Astronomical object by Ciro Santilli 35 Updated +Created
ZX-calculus by Ciro Santilli 35 Updated +Created
How can we easily prove that that quantum circuit equals the state:
?
The naive way would be to just do the matrix multiplication as explained at Section "Quantum computing is just matrix multiplication".
However, ZX-calculus provides a simpler way.
And even more importantly, sometimes it is the only way, because in a real circuit, we would not be able to do the matrix multiplication
What we do in ZX-calculus is we first transform the original quantum circuit into a ZX graph.
This is always possible, because we can describe how to do the conversion simply for any of the Clifford plus T gates, which is a set of universal quantum gates.
Then, after we do this transformation, we can start applying further transformations that simplify the circuit.
It has already been proven that there is no efficient algorithm for this (TODO source, someone said P-sharp complete best case)
But it has been proven in 2017 that any possible equivalence between quantum circuits can be reached by modifying ZX-calculus circuits.
There are only 7 transformation rules that we need, and all others can be derived from those, universality.
So, we can apply those rules to do the transformation shown in Wikipedia:
Figure 1.
GHZ circuit as ZX-diagram
. Source.
and one of those rules finally tells us that that last graph means our desired state:
because it is a Z spider with and .
Video 1.
Working with PyZX by Aleks Kissinger (2019)
Source. This video appears to give amazing motivation on why you should care about ZX-calculus, it mentions

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact