Cornelius Greither does not appear to be a widely recognized public figure, concept, or item as of my last knowledge update in October 2023. It's possible that he could be a person not covered in major historical or news contexts, a fictional character, or a name associated with a lesser-known work or field.
Cristian Dumitru Popescu could refer to a number of individuals, as it is a relatively common name, particularly in Romania. Without additional context, it’s challenging to provide specific information.
Curtis Cooper is an American mathematician known primarily for his work in the field of number theory and, more specifically, for his contributions to the discovery of large prime numbers. He is a key figure in the Great Internet Mersenne Prime Search (GIMPS), a distributed computing project aimed at finding new Mersenne primes, which are prime numbers that can be expressed in the form \(2^p - 1\) where \(p\) is also a prime number.
D. H. Lehmer by Wikipedia Bot 0
D. H. Lehmer refers to Derrick Henry Lehmer (1905–1997), a prominent American mathematician known for his contributions to number theory, particularly in the areas of prime numbers, factorization, and computational mathematics. Lehmer is best known for developing algorithms for efficiently factoring large numbers and for his work on the computation of the distribution of prime numbers. He also created the Lehmer sieve and contributed to the development of the modern theory of primality testing.
Fred Diamond by Wikipedia Bot 0
Fred Diamond is a well-known figure in the field of sales and sales training. He is the co-founder and president of the Institute for Excellence in Sales (IES), an organization that focuses on helping companies and sales professionals improve their sales skills and processes. Diamond is also recognized as a speaker, author, and consultant, providing insights into effective sales strategies and leadership. His work often emphasizes the importance of relationship-building, understanding customer needs, and the role of emotional intelligence in sales.
Fritz Gassmann by Wikipedia Bot 0
Fritz Gassmann is not widely recognized as a prominent figure in history or popular culture, at least not in the contexts commonly referenced. It's possible that he could refer to a lesser-known individual or a fictional character, but there isn't significant information available about someone by that name.
Daihachiro Sato by Wikipedia Bot 0
Daihachiro Sato is a life-sized robotic mannequin developed by a team of researchers in Japan. It is designed to mimic human movements and expressions in a highly realistic manner. This technology has applications in various fields, including healthcare, education, and entertainment. The robot is often used for training medical students in procedures, as well as in other scenarios where realistic human interaction is beneficial.
Daniel Goldston by Wikipedia Bot 0
Daniel Goldston is a mathematician known for his work in number theory and combinatorics. He has made significant contributions to various problems in these fields, including his work on prime numbers and additive number theory. One of his notable contributions is the Goldston-Pintz-Yildirim theorem, which pertains to the gaps between consecutive prime numbers.
David Ginzburg by Wikipedia Bot 0
David Ginzburg could refer to multiple individuals or entities, as it is not an uncommon name. If you are referring to a specific person, such as an artist, scientist, or public figure, please provide more context or details, and I'll do my best to help you find the information you're looking for. If there’s a specific field or achievement connected to the name, that would be helpful too!
David Soudry by Wikipedia Bot 0
As of my last knowledge update in October 2023, there isn't widely recognized information about an individual or entity named "David Soudry." It is possible that he is a private individual, or perhaps a figure not widely covered in public sources.
Derrick Norman Lehmer (1905-1997) was an American mathematician and a prominent figure in number theory and computational mathematics. He is best known for his work in the field of prime numbers and for developing algorithms and techniques for integer factorization. Lehmer contributed significantly to the use of computers in mathematics, particularly in the verification of large prime numbers. One of his notable contributions is the Lehmer sieve, a generalization of the classical sieve methods used to find prime numbers.
Dihua Jiang by Wikipedia Bot 0
Dihua Jiang (Tephrosia villosa) is a traditional Chinese medicinal herb, primarily known for its use in TCM (Traditional Chinese Medicine). It is derived from the dried root of the plant and has a history of being used for its various therapeutic properties. Dihua Jiang is often included in formulations aimed at tonifying the spleen, nourishing the blood, and treating conditions such as fatigue, weakness, and other ailments associated with deficiencies in these areas.
Hans Riesel by Wikipedia Bot 0
Hans Riesel is known primarily as a German mathematician and computer scientist who made significant contributions to the fields of number theory and combinatorics. He is particularly noted for his work related to prime numbers and the development of algorithms for primality testing. In addition to his mathematical work, the name "Riesel" is also associated with Riesel numbers in number theory, which are related to certain types of integers defined by their relation to prime numbers.
Harold Davenport by Wikipedia Bot 0
Harold Davenport (1907–1969) was a prominent British mathematician known for his significant contributions to number theory and mathematical analysis. He is particularly well-known for his work in additive number theory, the theory of prime numbers, and various aspects of Diophantine equations. Some of his notable achievements include results related to the distribution of prime numbers and the formulation of Davenport's theorem in additive number theory.
Dorothy Wallace by Wikipedia Bot 0
Dorothy Wallace could refer to a variety of individuals, as it is not an uncommon name. Without additional context, it's difficult to pinpoint a specific person or subject.
Eduard Wirsing by Wikipedia Bot 0
Eduard Wirsing is a notable figure in the field of mathematics, particularly known for his contributions to functional analysis and partial differential equations. He is recognized for his work in the areas of mathematical physics and the foundations of mathematics. Wirsing authored several papers and books that have influenced researchers in his fields of study.
Edward Waring by Wikipedia Bot 0
Edward Waring (1736–1798) was an English mathematician known for his contributions to number theory, particularly to the study of partitions and the properties of numbers. He is perhaps best known for Waring's problem, which conjectures that every natural number can be expressed as the sum of a fixed number of natural numbers raised to a certain power. The problem has historical significance and has led to extensive research and developments in number theory.
Erich Hecke by Wikipedia Bot 0
Erich Hecke was a prominent German mathematician known for his significant contributions to number theory, particularly in the areas of algebraic number theory and modular forms. He lived from 1887 to 1947. One of his key contributions is the development of Hecke algebras, which play an important role in the study of modular forms and their relationships to Galois representations.
Ernst Kummer by Wikipedia Bot 0
Ernst Kummer (1810-1893) was a German mathematician known for his contributions to number theory, algebra, and the theory of complex numbers. He is best known for his work on ideal numbers and algebraic structures, especially in the context of algebraic number theory. One of Kummer's significant contributions was the introduction of the concept of "ideal numbers," which he used to address problems related to the factorization of integers in certain number fields.
Ernst Meissel by Wikipedia Bot 0
Ernst Meissel is not a widely recognized term or entity in popular discourse, historical context, or notable databases. It is possible that you may be referring to a specific individual, event, or concept that is not commonly known or recorded in available sources.

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact