Superconducting temperature of aluminum Updated +Created
Trust (law) Updated +Created
Uncanny valley Updated +Created
Drew Berry Updated +Created
This is the dude that made many of the amazing WEHImovies animation.
Unfortunately, the process appears to be quite manual and laborious, more art than simulation, based on the software list used: www.drewberry.com/faq
Video 1.
Animations of unseeable biology by Drew Berry (2021)
Source. Presented at TED.
Nuclear weapon test Updated +Created
Quote by Shakespeare Updated +Created
Spherical pendulum Updated +Created
Dream Updated +Created
Geology Updated +Created
Implications of AGI Updated +Created
Sigma bond Updated +Created
Young's interference experiment Updated +Created
Permutation group Updated +Created
BB84 Updated +Created
Does not require entangled particles, unlike E91 which does.
en.wikipedia.org/w/index.php?title=Quantum_key_distribution&oldid=1079513227#BB84_protocol:_Charles_H._Bennett_and_Gilles_Brassard_(1984) explains it well. Basically:
  • Alice and Bob randomly select a measurement basis of either 90 degrees and 45 degrees for each photon
  • Alice measures each photon. There are two possible results to either measurement basis: parallel or perpendicular, representing values 0 or 1. TODO understand better: weren't the possible results supposed to be pass or non-pass? She writes down the results, and sends the (now collapsed) photons forward to Bob.
  • Bob measures the photons and writes down the results
  • Alice and Bob communicate to one another their randomly chosen measurement bases over the unencrypted classic channel.
    This channel must be authenticated to prevent man-in-the-middle. The only way to do this authentication that makes sense is to use a pre-shared key to create message authentication codes. Using public-key cryptography for a digital signature would be pointless, since the only advantage of QKD is to avoid using public-key cryptography in the first place.
  • they drop all photons for which they picked different basis. The measurements of those which were in the same basis are the key. Because they are in the same basis, their results must always be the same in an ideal system.
  • if there is an eavesdropper on the line, the results of measurements on the same basis can differ.
    Unfortunately, this can also happen due to imperfections in the system.
    Alice and Bob must decide what level of error is above the system's imperfections and implies that an attacker is listening.
Crucifixion Updated +Created
Germline and somatic cells Updated +Created
Telecommunication system Updated +Created
Big O notation Updated +Created
Module bound above, possibly multiplied by a constant:
is defined as:
E.g.:
  • . For , is enough. Otherwise, any will do, the bottom line will always catch up to the top one eventually.

Unlisted articles are being shown, click here to show only listed articles.