Public relations Updated +Created
The reason public relations is evil in modern society is because, like discrimination, public relations works by dumb association and not logic or fairness.
If you're the son of the killer, you're fucked.
This is unlike our ideal for law which attempts, though sometimes fails, at isolating cause and effect.
Python (programming language) Updated +Created
Examples under python.
Ciro Santilli's wife was studying a bit of basic Python for some job interviews, when she noticed:
Wow, in is so powerful! You can do for x in list, for x in dict and if x in dict all with that single word!
Damn right, girl, damn right.
Ciro remembers hearing about Python online briefly. It seemed like a distant thing from the Java/C dominated (and outdated) university courses. Then some teaching assistant mentioned during some course when Ciro was at École Polytechnique that Python was a great integration tool. That sounded cool.
Then finally, when the École Polytechnique mathematics department didn't let Ciro Santilli do his internship of choice due to grades and Ciro was at an useless last moment backup internship, he learned more Python instead of doing his internship job, and was hooked.
Polonium Updated +Created
Discovered by Marie Curie, published July 1999.
Pseudoscience Updated +Created
qiskit/initialize.py Updated +Created
In this example we will initialize a quantum circuit with a single CNOT gate and see the output values.
By default, Qiskit initializes every qubit to 0 as shown in the qiskit/hello.py. But we can also initialize to arbitrary values as would be done when computing the output for various different inputs.
Output:
     ┌──────────────────────┐
q_0: ┤0                     ├──■──
     │  Initialize(1,0,0,0) │┌─┴─┐
q_1: ┤1                     ├┤ X ├
     └──────────────────────┘└───┘
c: 2/═════════════════════════════

init: [1, 0, 0, 0]
probs: [1. 0. 0. 0.]

init: [0, 1, 0, 0]
probs: [0. 0. 0. 1.]

init: [0, 0, 1, 0]
probs: [0. 0. 1. 0.]

init: [0, 0, 0, 1]
probs: [0. 1. 0. 0.]

     ┌──────────────────────────────────┐
q_0: ┤0                                 ├──■──
     │  Initialize(0.70711,0,0,0.70711) │┌─┴─┐
q_1: ┤1                                 ├┤ X ├
     └──────────────────────────────────┘└───┘
c: 2/═════════════════════════════════════════

init: [0.7071067811865475, 0, 0, 0.7071067811865475]
probs: [0.5 0.5 0.  0. ]
which we should all be able to understand intuitively given our understanding of the CNOT gate and quantum state vectors.
quantumcomputing.stackexchange.com/questions/13202/qiskit-initializing-n-qubits-with-binary-values-0s-and-1s describes how to initialize circuits qubits only with binary 0 or 1 to avoid dealing with the exponential number of elements of the quantum state vector.
Quantum computers as experiments that are hard to predict outcomes Updated +Created
One possibly interesting and possibly obvious point of view, is that a quantum computer is an experimental device that executes a quantum probabilistic experiment for which the probabilities cannot be calculated theoretically efficiently by a nuclear weapon.
This is how quantum computing was originally theorized by the likes of Richard Feynman: they noticed that "Hey, here's a well formulated quantum mechanics problem, which I know the algorithm to solve (calculate the probability of outcomes), but it would take exponential time on the problem size".
The converse is then of course that if you were able to encode useful problems in such an experiment, then you have a computer that allows for exponential speedups.
This can be seen very directly by studying one specific quantum computer implementation. E.g. if you take the simplest to understand one, photonic quantum computer, you can make systems for which you need exponential time to calculate the probabilities that photons will exit through certain holes and not others.
The obvious aspect of this idea is by coming from quantum logic gates are needed because you can't compute the matrix explicitly as it grows exponentially: knowing the full explicit matrix is impossible in practice, and knowing the matrix is equivalent to knowing the probabilities of every outcome.
Natural science Updated +Created
Ciro Santilli often wonders to himself, how much of the natural sciences can one learn in a lifetime? Certainly, a very strong basis, with concrete experimental and physics, chemistry and biology should be attainable to all? How much Ciro manages to learning and teach in those areas is a kind of success metric of Ciro's life.
Nitrogen Updated +Created
Quantum computer simulator Updated +Created
Bibliography:
Quantum control systems use FPGAs Updated +Created
It seems that all/almost all of them do. Quite cool.
Video 1.
FPGA Architecture of the Quantum Control System by Keysight (2022)
Source. They actually have a dedicated quantum team! Cool.
Video 2.
FPGA based servo system by Atoms & Laser (2018)
Source. The Indian lady is hardcore.
Calcium Updated +Created
Polonium-210 Updated +Created
The only isotope found on Earth because it occurs as part of the uranium 238 decay chain, i.e., it is not a primordial nuclide.
Interestingly it is a bit less stable than other isotopesL such as Polonium-208 (3 y) and Polonium-209 (124 y), but those aren't in any Earthly radioactive chain so they don't show up on Earth.
Uranium-235 Updated +Created
Wikimedia Commons Updated +Created
A really good option to store educational media such as images and video!
Shame that like the rest of Wikimedia, their interface is so clunky and lacking obvious features.
Gun-type fission weapon Updated +Created
Gun-type fission weapons are the simplest approach and they work with Uranium-235 bombs as you can ignite it with just one explosion.
Phosphorescence Updated +Created
Silicon Updated +Created
Advanced Linux Sound Architecture Updated +Created
ALSA can be thought as analogous to physical wires linking up machines.
Except that instead of machines, you have separate programs. One such typical link is:
The advantage of this setup is that separate programs can collaborate to make complex sounds.
The disadvantage of this setup is that it makes it very hard to reproduce results, you basically need a Docker image with the exact same version of everything. And some script to launch and connect all programs correctly.
Some composition systems like LMMS reduce that problem by having synthesizers as plugins, so that you don't have to setup any connections yourself.

Unlisted articles are being shown, click here to show only listed articles.