The reason public relations is evil in modern society is because, like discrimination, public relations works by dumb association and not logic or fairness.
If you're the son of the killer, you're fucked.
This is unlike our ideal for law which attempts, though sometimes fails, at isolating cause and effect.
Examples under python.
Ciro Santilli's wife was studying a bit of basic Python for some job interviews, when she noticed:Damn right, girl, damn right.
Wow,in
is so powerful! You can dofor x in list
,for x in dict
andif x in dict
all with that single word!
Ciro remembers hearing about Python online briefly. It seemed like a distant thing from the Java/C dominated (and outdated) university courses. Then some teaching assistant mentioned during some course when Ciro was at École Polytechnique that Python was a great integration tool. That sounded cool.
Then finally, when the École Polytechnique mathematics department didn't let Ciro Santilli do his internship of choice due to grades and Ciro was at an useless last moment backup internship, he learned more Python instead of doing his internship job, and was hooked.
Discovered by Marie Curie, published July 1999.
In this example we will initialize a quantum circuit with a single CNOT gate and see the output values.
By default, Qiskit initializes every qubit to 0 as shown in the qiskit/hello.py. But we can also initialize to arbitrary values as would be done when computing the output for various different inputs.
Output:which we should all be able to understand intuitively given our understanding of the CNOT gate and quantum state vectors.
┌──────────────────────┐
q_0: ┤0 ├──■──
│ Initialize(1,0,0,0) │┌─┴─┐
q_1: ┤1 ├┤ X ├
└──────────────────────┘└───┘
c: 2/═════════════════════════════
init: [1, 0, 0, 0]
probs: [1. 0. 0. 0.]
init: [0, 1, 0, 0]
probs: [0. 0. 0. 1.]
init: [0, 0, 1, 0]
probs: [0. 0. 1. 0.]
init: [0, 0, 0, 1]
probs: [0. 1. 0. 0.]
┌──────────────────────────────────┐
q_0: ┤0 ├──■──
│ Initialize(0.70711,0,0,0.70711) │┌─┴─┐
q_1: ┤1 ├┤ X ├
└──────────────────────────────────┘└───┘
c: 2/═════════════════════════════════════════
init: [0.7071067811865475, 0, 0, 0.7071067811865475]
probs: [0.5 0.5 0. 0. ]
quantumcomputing.stackexchange.com/questions/13202/qiskit-initializing-n-qubits-with-binary-values-0s-and-1s describes how to initialize circuits qubits only with binary 0 or 1 to avoid dealing with the exponential number of elements of the quantum state vector.
Quantum computers as experiments that are hard to predict outcomes Updated 2025-07-11 +Created 1970-01-01
One possibly interesting and possibly obvious point of view, is that a quantum computer is an experimental device that executes a quantum probabilistic experiment for which the probabilities cannot be calculated theoretically efficiently by a nuclear weapon.
This is how quantum computing was originally theorized by the likes of Richard Feynman: they noticed that "Hey, here's a well formulated quantum mechanics problem, which I know the algorithm to solve (calculate the probability of outcomes), but it would take exponential time on the problem size".
The converse is then of course that if you were able to encode useful problems in such an experiment, then you have a computer that allows for exponential speedups.
This can be seen very directly by studying one specific quantum computer implementation. E.g. if you take the simplest to understand one, photonic quantum computer, you can make systems for which you need exponential time to calculate the probabilities that photons will exit through certain holes and not others.
The obvious aspect of this idea is by coming from quantum logic gates are needed because you can't compute the matrix explicitly as it grows exponentially: knowing the full explicit matrix is impossible in practice, and knowing the matrix is equivalent to knowing the probabilities of every outcome.
Ciro Santilli often wonders to himself, how much of the natural sciences can one learn in a lifetime? Certainly, a very strong basis, with concrete experimental and physics, chemistry and biology should be attainable to all? How much Ciro manages to learning and teach in those areas is a kind of success metric of Ciro's life.
Other good lists:
- quantumcomputingreport.com/resources/tools/ is hard to beat as usual.
- www.quantiki.org/wiki/list-qc-simulators
- JavaScript
- algassert.com/quirk demo: github.com/Strilanc/Quirk drag-and-drop, by a 2019-quantum-computing-Googler, impressive. You can create gates. State store in URL.
- github.com/stewdio/q.js/ demo: quantumjavascript.app/
Bibliography:
- www.epcc.ed.ac.uk/whats-happening/articles/energy-efficient-quantum-computing-simulations mentions two types of quantum computer simulation:
The most common approach to quantum simulations is to store the whole state in memory and to modify it with gates in a given order
However, there is a completely different approach that can sometimes eliminate this issue - tensor networks
It seems that all/almost all of them do. Quite cool.
FPGA Architecture of the Quantum Control System by Keysight (2022)
Source. They actually have a dedicated quantum team! Cool.The only isotope found on Earth because it occurs as part of the uranium 238 decay chain, i.e., it is not a primordial nuclide.
Gun-type fission weapons are the simplest approach and they work with Uranium-235 bombs as you can ignite it with just one explosion.
But Gun-type fission weapons don't work with plutonium, and weapon grade Plutonium is cheaper than weapon grade Uranium, so it wasn't much used.
Except that instead of machines, you have separate programs. One such typical link is:
- from a MIDI source, e.g. vmpk or a MIDI editor with playback like Ardour
- to a synthesizer like FluidSynth or ZynAddSubFX
The advantage of this setup is that separate programs can collaborate to make complex sounds.
The disadvantage of this setup is that it makes it very hard to reproduce results, you basically need a Docker image with the exact same version of everything. And some script to launch and connect all programs correctly.
Unlisted articles are being shown, click here to show only listed articles.