Uranium-235 Updated +Created
Wikimedia Commons Updated +Created
A really good option to store educational media such as images and video!
Shame that like the rest of Wikimedia, their interface is so clunky and lacking obvious features.
Polonium-210 Updated +Created
The only isotope found on Earth because it occurs as part of the uranium 238 decay chain, i.e., it is not a primordial nuclide.
Interestingly it is a bit less stable than other isotopesL such as Polonium-208 (3 y) and Polonium-209 (124 y), but those aren't in any Earthly radioactive chain so they don't show up on Earth.
Quantum interconnect Updated +Created
"Quantum interconnect" refers to methods for linking up smaller quantum processors into a larger system.
As of 2024, seemingly few organizations developing quantum hardware had actually integrated multiple chips in interconnects as part of their main current roadmap. But many acknowledged that this would be an essential step towards scalable compuation.
The name "quantum interconnect" is likely partly a throwback to classical computer's "chip interconnect".
Sample usages of the term:
Video 1.
Gerhard Rempe - Quantum Dynamics by Max Planck Institute of Quantum Optics
. Source. No technical details of course, but they do show off their optical tables quite a bit!
Allen Wu Updated +Created
This situation is the most bizarre thing ever. The dude was fired in 2020, but he refused to be fired, and because he has the company seal, they can't fire him. He is still going to the office as of 2022. It makes one wonder what are the true political causes for this situation. A big warning sign to all companies tring to setup joint ventures in China!
Video 1.
ARM Fired ARM China’s CEO But He Won’t Go by Asianometry (2021)
Source.
Quantum chromodynamics Updated +Created
Video 1.
Quarks, Gluon flux tubes, Strong Nuclear Force, & Quantum Chromodynamics by Physics Videos by Eugene Khutoryansky (2018)
Source. Some decent visualizations of how the field lines don't expand out like they do in electromagnetism, suggesting color confinement.
Video 2.
PHYS 485 Lecture 6: Feynman Diagrams by Roger Moore (2016)
Source. Despite the title, this is mostly about QCD.
Quantum computer benchmark Updated +Created
One important area of research and development of quantum computing is the development of benchmarks that allow us to compare different quantum computers to decide which one is more powerful than the other.
Ideally, we would like to be able to have a single number that predicts which computer is more powerful than the other for a wide range of algorithms.
However, much like in CPU benchmarking, this is a very complex problem, since different algorithms might perform differently in different architectures, making it very hard to sum up the architecture's capabilities to a single number as we would like.
The only thing that is directly comparable across computers is how two machines perform for a single algorithm, but we want a single number that is representative of many algorithms.
For example, the number of qubits would be a simple naive choice of such performance predictor number. But it is very imprecise, since other factors are also very important:
  • qubit error rate
  • coherence time, which determines the maximum circuit depth
  • qubit connectivity. Can you only connect to 4 neighbouring qubits in a 2D plane? Or to every other qubit equally as well?
Quantum volume is another less naive attempt at such metric.
Quantum logic gates are needed for physical implementation Updated +Created
One direct practical reason is that we need to map the matrix to real quantum hardware somehow, and all quantum hardware designs so far and likely in the future are gate-based: you manipulate a small number of qubits at a time (2) and add more and more of such operations.
While there are "quantum compilers" to increase the portability of quantum programs, it is to be expected that programs manually crafted for a specific hardware will be more efficient just like in classic computers.
TODO: is there any clear reason why computers can't beat humans in approximating any unitary matrix with a gate set?
This is analogous to what classic circuit programmers will do, by using smaller logic gates to create complex circuits, rather than directly creating one huge truth table.
The most commonly considered quantum gates take 1, 2, or 3 qubits as input.
The gates themselves are just unitary matrices that operate on the input qubits and produce the same number of output qubits.
For example, the matrix for the CNOT gate, which takes 2 qubits as input is:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
The final question is then: if I have a 2 qubit gate but an input with more qubits, say 3 qubits, then what does the 2 qubit gate (4x4 matrix) do for the final big 3 qubit matrix (8x8)? In order words, how do we scale quantum gates up to match the total number of qubits?
The intuitive answer is simple: we "just" extend the small matrix with a larger identity matrix so that the sum of the probabilities third bit is unaffected.
More precisely, we likely have to extend the matrix in a way such that the partial measurement of the original small gate qubits leaves all other qubits unaffected.
For example, if the circuit were made up of a CNOT gate operating on the first and second qubits as in:
0 ----+----- 0
      |
1 ---CNOT--- 1

2 ---------- 2
then we would just extend the 2x2 CNOT gate to:
TODO lazy to properly learn right now. Apparently you have to use the Kronecker product by the identity matrix. Also, zX-calculus appears to provide a powerful alternative method in some/all cases.
Silicon Updated +Created
Cambridge Updated +Created
Contains the University of Cambridge, that's about it really, from that everything follows.
The city appear to exist there because it was a convenient crossing of the Cam. It also lies near the start of the ancient navigable section TODO towards north or south? Castle hill also offered a convenient fortification location near the river, and is part of the reason for the early Roman settlement. The original bridge was presumably in the current Magnalene bridge, just under the castle hill.
TODO why did the University of Oxford scholars flee to after the The hanging of the clerks in 1209? Why not anywhere else?
Quantum Mechanical View of Reality by Richard Feynman (1983) Updated +Created
Basically the same content as: Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979), but maybe there is some merit to this talk, as it is a bit more direct in some points. This is consistent with what is mentioned at www.feynman.com/science/qed-lectures-in-new-zealand/ that the Auckland lecture was the first attempt.
By Mill Valley, CA based producer "Sound Photosynthesis", some info on their website: sound.photosynthesis.com/Richard_Feynman.html
They are mostly a New Age production company it seems, which highlights Feynman's absolute cult status. E.g. on the last video, he's not wearing shoes, like a proper guru.
Feynman liked to meet all kinds of weird people, and at some point he got interested in the New Age Esalen Institute. Surely You're Joking, Mr. Feynman this kind of experience a bit, there was nude bathing on a pool that oversaw the sea, and a guy offered to give a massage to the he nude girl and the accepted.
youtu.be/rZvgGekvHest=5105 actually talks about spin, notably that the endpoint events also have a spin, and that the transition rules take spin into account by rotating thing, and that the transition rules take spin into account by rotating things.
Radium Updated +Created
Discovered by Marie Curie when she noticed that there was some yet unknown more radioactive element in their raw samples, after uranium and polonium, which she published 6 months prior, had already been separated. Published on December 1989 as: Section "Sur une nouvelle substance fortement radio-active, contenue dans la pechblende".
The uranium 238 decay chain is the main source of naturally occurring radium.
Video 1.
The epic story of radium by Institut de Radioprotection et de Sûreté Nucléaire (2013)
Source.
100,000 Genomes Project Updated +Created
1932 Nobel Prize in Physics Updated +Created
Quantum computing Updated +Created
Quantum is getting hot in 2019, and even Ciro Santilli got a bit excited: quantum computing could be the next big thing.
No useful algorithm has been economically accelerated by quantum yet as of 2019, only useless ones, but the bets are on, big time.
To get a feeling of this, just have a look at the insane number of startups that are already developing quantum algorithms for hardware that doesn't/barely exists! quantumcomputingreport.com/players/privatestartup (archive). Some feared we might be in a bubble: Are we in a quantum computing bubble?
To get a basic idea of what programming a quantum computer looks like start by reading: Section "Quantum computing is just matrix multiplication".
Some people have their doubts, and that is not unreasonable, it might truly not work out. We could be on the verge of an AI winter of quantum computing. But Ciro Santilli feels that it is genuinely impossible to tell as of 2020 if something will work out or not. We really just have to try it out and see. There must have been skeptics before every single next big thing.
Quantum computing could be the next big thing Updated +Created
As of 2020, Ciro Santilli is getting excited about quantum computing, which is a deep tech field.
He's a bit lazy to explain why here, but Googling will be more than enough.
There is a risk it will fizzle and the bubble pop, like any revolution.
But recent developments are making it too exciting to ignore.
Quantum number Updated +Created
However, it very cool that they are actually discovered before the Schrödinger equation, and are present in the Bohr model (principal quantum number) and the Bohr-Sommerfeld model (azimuthal quantum number and magnetic quantum number) of the atom. This must be because they observed direct effects of those numbers in some experiments. TODO which experiments.
E.g. The Quantum Story by Jim Baggott (2011) page 34 mentions:
As the various lines in the spectrum were identified with different quantum jumps between different orbits, it was soon discovered that not all the possible jumps were appearing. Some lines were missing. For some reason certain jumps were forbidden. An elaborate scheme of ‘selection rules’ was established by Bohr and Sommerfeld to account for those jumps that were allowed and those that were forbidden.
This refers to forbidden mechanism. TODO concrete example, ideally the first one to be noticed. How can you notice this if the energy depends only on the principal quantum number?
Video 1.
Quantum Numbers, Atomic Orbitals, and Electron configurations by Professor Dave Explains (2015)
Source. He does not say the key words "Eigenvalues of the Schrödinger equation" (Which solve it), but the summary of results is good enough.

There are unlisted articles, also show them or only show them.