Topological quantum computer Updated +Created
Video 1.
Topological Quantum Computer by Professor John Preskill
. Source.
Video 2.
Topological Quantum Computation by Jason Alicea (2021)
Source.
Video 3.
Anyons by Yuly Billig (2022)
Source.
tig (git UI) Updated +Created
This is good. But it misses some key operations, so much so that makes Ciro not want to learn/use it daily.
Lagrangian mechanics Updated +Created
Originally it was likely created to study constrained mechanical systems where you want to use some "custom convenient" variables to parametrize things instead of global x, y, z. Classical examples that you must have in mind include:
  • compound Atwood machine. Here, we can use the coordinates as the heights of masses relative to the axles rather than absolute heights relative to the ground
  • double pendulum, using two angles. The Lagrangian approach is simpler than using Newton's laws
  • two-body problem, use the distance between the bodies
lagrangian mechanics lectures by Michel van Biezen (2017) is a good starting point.
When doing lagrangian mechanics, we just lump together all generalized coordinates into a single vector that maps time to the full state:
where each component can be anything, either the x/y/z coordinates relative to the ground of different particles, or angles, or nay other crazy thing we want.
The Lagrangian is a function that maps:
to a real number.
Then, the stationary action principle says that the actual path taken obeys the Euler-Lagrange equation:
This produces a system of partial differential equations with:
  • equations
  • unknown functions
  • at most second order derivatives of . Those appear because of the chain rule on the second term.
The mixture of so many derivatives is a bit mind mending, so we can clarify them a bit further. At:
the is just identifying which argument of the Lagrangian we are differentiating by: the i-th according to the order of our definition of the Lagrangian. It is not the actual function, just a mnemonic.
Then at:
  • the part is just like the previous term, just identifies the argument with index ( because we have the non derivative arguments)
  • after the partial derivative is taken and returns a new function , then the multivariable chain rule comes in and expands everything into terms
However, people later noticed that the Lagrangian had some nice properties related to Lie group continuous symmetries.
Basically it seems that the easiest way to come up with new quantum field theory models is to first find the Lagrangian, and then derive the equations of motion from them.
For every continuous symmetry in the system (modelled by a Lie group), there is a corresponding conservation law: local symmetries of the Lagrangian imply conserved currents.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Furthermore, given the symmetry, we can calculate the derived conservation law, and vice versa.
And partly due to the above observations, it was noticed that the easiest way to describe the fundamental laws of particle physics and make calculations with them is to first formulate their Lagrangian somehow: S.
Bibliography:
Video 1.
Euler-Lagrange equation explained intuitively - Lagrangian Mechanics by Physics Videos by Eugene Khutoryansky (2018)
Source. Well, unsurprisingly, it is exactly what you can expect from an Eugene Khutoryansky video.
Point particle Updated +Created
This idealization does not seems to be possible at all in the context of Maxwell's equations with pointlike particles.
Porn meme Updated +Created
Force Updated +Created
ZX-calculus Updated +Created
How can we easily prove that that quantum circuit equals the state:
?
The naive way would be to just do the matrix multiplication as explained at Section "Quantum computing is just matrix multiplication".
However, ZX-calculus provides a simpler way.
And even more importantly, sometimes it is the only way, because in a real circuit, we would not be able to do the matrix multiplication
What we do in ZX-calculus is we first transform the original quantum circuit into a ZX graph.
This is always possible, because we can describe how to do the conversion simply for any of the Clifford plus T gates, which is a set of universal quantum gates.
Then, after we do this transformation, we can start applying further transformations that simplify the circuit.
It has already been proven that there is no efficient algorithm for this (TODO source, someone said P-sharp complete best case)
But it has been proven in 2017 that any possible equivalence between quantum circuits can be reached by modifying ZX-calculus circuits.
There are only 7 transformation rules that we need, and all others can be derived from those, universality.
So, we can apply those rules to do the transformation shown in Wikipedia:
Figure 1.
GHZ circuit as ZX-diagram
. Source.
and one of those rules finally tells us that that last graph means our desired state:
because it is a Z spider with and .
Video 1.
Working with PyZX by Aleks Kissinger (2019)
Source. This video appears to give amazing motivation on why you should care about ZX-calculus, it mentions
List of search engines Updated +Created
Glueball Updated +Created
GDB reverse debugging Updated +Created
The best open source implementation as of 2020 seems to be: Mozilla rr.
Chinese poem Updated +Created
The Math Genome Project Updated +Created
The website was dead as of February 2025. Last archive: web.archive.org/web/20240418004442/http://www.themathgenome.com/ Pings:They were seeking help on May 2024:so its likely the followup death. LinkedIn post gives basic stack: MERN stack, Heroku, Supabase/MongoDB Atlas.
Appears to support multiple proof assistant backends including Lean, Hol and Coq.
A discussion on the Lean Zulip: leanprover.zulipchat.com/#narrow/stream/113488-general/topic/The.20Math.20Genome.20Project/near/352639129. Lean people are not convinced about the model in general it seems however.
TODO not viewable without login?
Has conjectures feature.
Built by this dude John Mercer:He must be independently wealthy or something to do such a project? What a hero. But he seems to have jobs. On the side? Hardcore.
Ciro Santilli asked: discord.com/channels/1096393420408360989/1096393420408360996/1137047842159079474
Does the website actually automatically check the formal proofs, or is this intended to be implemented at some point? And if yes, is it intended to allow proofs to depend on other proofs of the website (possibly by other people)
Owner:
Hi Ciro, yes we will be releasing in-browser proof assistant environments/checkers (e.g. Lean). Our goal is not to replace the underlying open-source repos (e.g. Mathlib) so the main dependency will be on the current repos; then when statement formalizations and proofs come in and are certified they can be PR'd to the respective repos. So we will be the source of truth for the informal latex code but only a stepping stone and orchestration layer on the way to the respective formal libraries.
So apparently there will be proof checking, but no dependencies between proofs, you still have to pull request everything back and face the pain.
Semiconductor Updated +Created
The basis of 1970-20XX computers, gotta understand them I guess?
GNOME desktop Updated +Created
Wave function Updated +Created
Contains the full state of the quantum system.
This is in contrast to classical mechanics where e.g. the state of mechanical system is given by two real functions: position and speed.
The wave equation in position representation on the other hand encodes speed in "how fast does the complex phase spin around", and direction in "does it spin clockwise or counterclockwise", as described well at: Video "Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)". Then once you understand that, it is more compact to just view those graphs with the phase color coded as in Video "Simulation of the time-dependent Schrodinger equation (JavaScript Animation) by Coding Physics (2019)".
Schrödinger picture example: quantum harmonic oscillator Updated +Created
TODO: use the results from the quantum harmonic oscillator solution to precisely illustrate the discussion at Schrödinger picture with a concrete example.

There are unlisted articles, also show them or only show them.