The cool thing about parallel evolution is that it shows how complex phenotype can evolve from very different initial genetic conditions, highlighting the great power of evolution.
We list some cool ones at: polyphyly.
Most of the helium in the Earth's atmosphere comes from alpha decay, since helium is lighter than air and naturally escapes out out of the atmosphere.
Wiki mentions that alpha decay is well modelled as a quantum tunnelling event, see also Geiger-Nuttall law.
As a result of that law, alpha particles have relatively little energy variation around 5 MeV or a speed of about 5% of the speed of light for any element, because the energy is inversely exponentially proportional to half-life. This is because:
- if the energy is much larger, decay is very fast and we don't have time to study the isotope
- if the energy is much smaller, decay is very rare and we don't have enough events to observe at all
Opposed to the hydrogen hypothesis, in which both cells cooperated from the start.
Each comic page has an "Emergency Button" below it, which redirects to a mock PDF formatted as a research paper, so you can quickly pretend to be working. Epic.
Subtle is the Lord by Abraham Pais (1982) page 22 mentions that when Einstein saw this in 1915, he was so excited he couldn't work for three days.
Proprietary extension to Mozilla rr by rr lead coder Robert O'Callahan et. al, started in 2016 after he quit Mozilla.
TODO what does it add to
rr
?Proportionality factor in the Planck-Einstein relation between light energy and frequency.
And analogously for matter, appears in the de Broglie relations relating momentum and frequency. Also appears in the Schrödinger equation, basically as a consequence/cause of the de Broglie relations most likely.
Intuitively, the Planck constant determines at what length scale do quantum effects start to show up for a given energy scale. It is because the Plank constant is very small that we don't perceive quantum effects on everyday energy/length/time scales. On the , quantum mechanics disappears entirely.
A very direct way of thinking about it is to think about what would happen in a double-slit experiment. TODO think more clearly what happens there.
Defined exactly in the 2019 redefinition of the SI base units to:
Some sources say that this is just the part that says that the norm of a function is the same as the norm of its Fourier transform.
Others say that this theorem actually says that the Fourier transform is bijective.
The comment at math.stackexchange.com/questions/446870/bijectiveness-injectiveness-and-surjectiveness-of-fourier-transformation-define/1235725#1235725 may be of interest, it says that the bijection statement is an easy consequence from the norm one, thus the confusion.
TODO does it require it to be in as well? Wikipedia en.wikipedia.org/w/index.php?title=Plancherel_theorem&oldid=987110841 says yes, but courses.maths.ox.ac.uk/node/view_material/53981 does not mention it.
There are infinitely many primes with a neighbor not further apart than 70 million. This was the first such finite bound to be proven, and therefore a major breakthrough.
This implies that for at least one value (or more) below 70 million there are infinitely many repetitions, but we don't know which e.g. we could have infinitely many:or infinitely many:or infinitely many:or infinitely many:but we don't know which of those.
The Prime k-tuple conjecture conjectures that it is all of them.
Also, if 70 million could be reduced down to 2, we would have a proof of the Twin prime conjecture, but this method would only work for (k, k + 2).
There are unlisted articles, also show them or only show them.