In the standard formulation of Maxwell's equations, the electric current is a convient but magic input.
Would it be possible to use Maxwell's equations to solve a system of pointlike particles such as electrons instead?
The following suggest no, or only for certain subcases less general than Maxwell's equations:
This is the type of thing where the probability aspect of quantum mechanics seems it could "help".
x.com/Birdyword/status/1777591446612193667Singaporean taxi drivers are the cutest.
A while ago a Singaporean taxi driver asked me what a UK hawker centre lunch might cost. I explained that there aren't any. He asked what office workers ate, and I explained the concept of Meal deals. And he looked at me with such a powerful combination of pity and revulsion.
Electronic Ink such as that found on Amazon Kindle is the greatest invention ever made by man.
Once E Ink reaches reasonable refresh rates to replace liquid crystal displays, the world will finally be saved.
It would allow Ciro Santilli to spend his entire life in front of a screen rather in the real world without getting tired eyes, and even if it is sunny outside.
Ciro stopped reading non-code non-news a while back though, so the current refresh rates are useless, what a shame.
OMG, this is amazing: getfreewrite.com/
MIT 8.06 Quantum Physics III, Spring 2018 by Barton Zwiebach Updated 2025-05-21 +Created 1970-01-01
Instructor: Barton Zwiebach.
Free material from university courses:
- physics.weber.edu/schroeder/quantum/QuantumBook.pdf (archive) "Notes on Quantum Mechanics" pusbliehd by Daniel V. Schroeder (2019) The author is from from Weber State University.
The example under verilog/interactive showcases how to create a simple interactive visual Verilog example using Verilator and SDL.
You could e.g. expand such an example to create a simple (or complex) video game for example if you were insane enough. But please don't waste your time doing that, Ciro Santilli begs you.
The example is also described at: stackoverflow.com/questions/38108243/is-it-possible-to-do-interactive-user-input-and-output-simulation-in-vhdl-or-ver/38174654#38174654
Usage: install dependencies:then run as either:Tested on Verilator 4.038, Ubuntu 22.04.
sudo apt install libsdl2-dev verilator
make run RUN=and2
make run RUN=move
File overview:
Interesting website, hosts mostly:
- datasets
- ANN models
- some live running demos called "apps": e.g. huggingface.co/spaces/ronvolutional/ai-pokemon-card
What's the point of this website vs GitHub? www.reddit.com/r/MLQuestions/comments/ylf4be/whats_the_deal_with_hugging_faces_popularity/
Maybe focus on job ads like Stack Overflow.
Like the rationals, this field also has the same cardinality as the natural numbers, because we can specify and enumerate each of its members by a fixed number of integers from the polynomial equation that defines them. So it is a bit like the rationals, but we use potentially arbitrary numbers of integers to specify each number (polynomial coefficients + index of which root we are talking about) instead of just always two as for the rationals.
Each algebraic number also has a degree associated to it, i.e. the degree of the polynomial used to define it.
First observed directly by the Cowan-Reines neutrino experiment.
Unlisted articles are being shown, click here to show only listed articles.