QuTech Academy by Ciro Santilli 37 Updated 2025-07-16
One of their learning sites: www.qutube.nl/
The educational/outreach branch of QuTech.
Flux qubit by Ciro Santilli 37 Updated 2025-07-16
In Ciro's ASCII art circuit diagram notation, it is a loop with three Josephson junctions:
+----X-----+
|          |
|          |
|          |
+--X----X--+
https://upload.wikimedia.org/wikipedia/en/0/04/Flux_Qubit_-_Holloway.jpg
Video 1.
Superconducting Qubit by NTT SCL (2015)
Source.
Offers an interesting interpretation of superposition in that type of device (TODO precise name, seems to be a flux qubit): current going clockwise or current going counter clockwise at the same time. youtu.be/xjlGL4Mvq7A?t=1348 clarifies that this is just one of the types of qubits, and that it was developed by Hans Mooij et. al., with a proposal in 1999 and experiments in 2000. The other type is dual to this one, and the superposition of the other type is between N and N + 1 copper pairs stored in a box.
Their circuit is a loop with three Josephson junctions, in Ciro's ASCII art circuit diagram notation:
+----X-----+
|          |
|          |
|          |
+--X----X--+
They name the clockwise and counter clockwise states and (named for Left and Right).
When half the magnetic flux quantum is applied as microwaves, this produces the ground state:
where and cancel each other out. And the first excited state is:
Then he mentions that:
  • to go from 0 to 1, they apply the difference in energy
  • if the duration is reduced by half, it creates a superposition of .
However superconducting qubits have a limit on how precise their parameters can be set based on how well we can fabricate devices. This may require per-device characterisation.
EdX course. Meh! Just give me the YouTube list!!
But seriously, this is a valuable little list.
The course is basically exclusively about transmons.
Video 1.
The transmon qubit by Leo Di Carlo (2018)
Source. Via QuTech Academy.
Video 2.
Circuit QED by Leo Di Carlo (2018)
Source. Via QuTech Academy.
Video 3.
Measurements on transmon qubits by Niels Bultink (2018)
Source. Via QuTech Academy. I wish someone would show some actual equipment running! But this is of interest.
Video 4.
Single-qubit gate by Brian Taraskinki (2018)
Source. Good video! Basically you make a phase rotation by controlling the envelope of a pulse.
Video 5.
Two qubit gates by Adriaan Rol (2018)
Source.
Video 6.
Assembling a Quantum Processor by Leo Di Carlo (2018)
Source. Via QuTech Academy.
Open X-Embodiment by Ciro Santilli 37 Updated 2025-07-16
GitHub describes the input quite well:
The model takes as input a RGB image from the robot workspace camera and a task string describing the task that the robot is supposed to perform.
What task the model should perform is communicated to the model purely through the task string. The image communicates to the model the current state of the world, i.e. assuming the model runs at three hertz, every 333 milliseconds, we feed the latest RGB image from a robot workspace camera into the model to obtain the next action to take.
TODO: how is the scenario specified?
TODO: any simulation integration to it?
https://web.archive.org/web/20250209172539if_/https://raw.githubusercontent.com/google-deepmind/open_x_embodiment/main/imgs/teaser.png
wikix.binets.fr runs an internal MediaWiki instance available to all logged in alumni.

Unlisted articles are being shown, click here to show only listed articles.