Iterative post-order with one stack by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
This is one of the prime examples of Europe's decline.
Instead of trying to dominate the sequencing market and gain trillions of dollars from it, they local British early stage investors were more than happy to get a 20x return on their small initial investments, and sold out to the Americans who will then make the real profit.
And now Solexa doesn't even have its own Wikipedia page, while Illumina is set out to be the next Microsoft. What a disgrace.
Here are some good articles about the company:
Cambridge visitors can still visit the Panton Arms pub, which was the location of the legendary "hey we should talk" founders meeting, chosen due to its proximity to the chemistry department of the University of Cambridge.
In 2021 the founders were awarded the Breakthrough Prize. The third person awarded was Pascal Mayer. He was apparently at Serono Pharmaceutical Research Institute at the time of development. They do have a wiki page unlike Solexa: en.wikipedia.org/wiki/Serono. They paid a 700 million fine in 2005 in the United States, and sold out in 2006 to Merck for 10 billion USD.
This was the original name of Google Search.
One wonders if this name has some influence from the LGBT culture in San Francisco! The sexual innuendo is palpable.
"Back" is of course a reference to "backlinks", since Google Search relies on incoming links (AKA backlinks) to a webpage to determine its importance.
They scanned a bunch of books, and then allowed search results to hit them. They then only show a small context around the hit to avoid copyright infringement.
Bibliography:
- www.theatlantic.com/technology/archive/2017/04/the-tragedy-of-google-books/523320/ Torching the modern-day Library of Alexandria (2015) by James Somers
- The Google Story Chapter 21. A Virtual Library paints a good picture of the people involved
Does this contain any structured data? E.g. can you list all papers by a given author besides just searching and hoping there are no homonyms?
Both of them attended Montessori education at some point. Interesting! Mentioned in a talk by Sergey and highlighted at The Google Story.
As The Google Story puts it about Largey:
Scholarship was not just emphasized in their homes; it was treasured.Ciro Santilli likes that.
This allows you to create multiple non-anonymous accounts on any website that doesn't account for it, as this is not part of the email protocols in general.
This is good. But it misses some key operations, so much so that makes Ciro not want to learn/use it daily.
phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9HE_-_Modern_Physics/06%3A_Emission_and_Absorption_of_Photons/6.2%3A_Selection_Rules_and_Transition_Times has some very good mentions:
So it appears that if a hydrogen atom emits a photon, it not only has to transition between two states whose energy difference matches the energy of the photon, but it is restricted in other ways as well, if its mode of radiation is to be dipole. For example, a hydrogen atom in its 3p state must drop to either the n=1 or n=2 energy level, to make the energy available to the photon. The n=2 energy level is 4-fold degenerate, and including the single n=1 state, the atom has five different states to which it can transition. But three of the states in the n=2 energy level have l=1 (the 2p states), so transitioning to these states does not involve a change in the angular momentum quantum number, and the dipole mode is not available.So what's the big deal? Why doesn't the hydrogen atom just use a quadrupole or higher-order mode for this transition? It can, but the characteristic time for the dipole mode is so much shorter than that for the higher-order modes, that by the time the atom gets around to transitioning through a higher-order mode, it has usually already done so via dipole. All of this is statistical, of course, meaning that in a large collection of hydrogen atoms, many different modes of transitions will occur, but the vast majority of these will be dipole.It turns out that examining details of these restrictions introduces a couple more. These come about from the conservation of angular momentum. It turns out that photons have an intrinsic angular momentum (spin) magnitude of , which means whenever a photon (emitted or absorbed) causes a transition in a hydrogen atom, the value of l must change (up or down) by exactly 1. This in turn restricts the changes that can occur to the magnetic quantum number: can change by no more than 1 (it can stay the same). We have dubbed these transition restrictions selection rules, which we summarize as:
The financial industry does not serve society nowhere near its magnitude (London of course being the epitome of that). It serves only itself. It just grows without bound.
- www.theatlantic.com/technology/archive/2011/05/on-the-floor-laughing-traders-are-having-a-new-kind-of-fun/238570/ On the Floor Laughing: Traders Are Having a New Kind of Fun (2011) by James Somers describes trading as a kind of game.
ELF is the dominating file format for Linux. It competes with Mach-O for OS X and PE for Windows.
ELF supersedes
.coff
, which supersedes a.out
.An ELF file contains the following parts:
- ELF header. Points to the position of the section header table and the program header table.
- Section header table (optional on executable). Each has
e_shnum
section headers, each pointing to the position of a section. - N sections, with
N <= e_shnum
(optional on executable) - Program header table (only on executable). Each has
e_phnum
program headers, each pointing to the position of a segment. - N segments, with
N <= e_phnum
(only on executable)
The order of those parts is not fixed: the only fixed thing is the ELF header that must be the first thing on the file: Generic docs say:
Although the figure shows the program header table immediately after the ELF header, and the section header table following the sections, actual files may differ. Moreover, sections and segments have no specified order. Only the ELF header has a fixed position in the file.
In pictures: sample object file with three sections:
+-------------------+
| ELF header |---+
+---------> +-------------------+ | e_shoff
| | |<--+
| Section | Section header 0 |
| | |---+ sh_offset
| Header +-------------------+ |
| | Section header 1 |---|--+ sh_offset
| Table +-------------------+ | |
| | Section header 2 |---|--|--+
+---------> +-------------------+ | | |
| Section 0 |<--+ | |
+-------------------+ | | sh_offset
| Section 1 |<-----+ |
+-------------------+ |
| Section 2 |<--------+
+-------------------+
But nothing (except sanity) prevents the following topology:
+-------------------+
| ELF header |---+ e_shoff
+-------------------+ |
| Section 1 |<--|--+
+---------> +-------------------+ | |
| | |<--+ | sh_offset
| Section | Section header 0 | |
| | |------|---------+
| Header +-------------------+ | |
| | Section header 1 |------+ |
| Table +-------------------+ |
| | Section header 2 |---+ | sh_offset
+---------> +-------------------+ | sh_offset |
| Section 2 |<--+ |
+-------------------+ |
| Section 0 |<---------------+
+-------------------+
But some newbies may prefer PNGs :-)
Only appears in the executable.
Contains information of how the executable should be put into the process virtual memory.
The executable is generated from object files by the linker. The main jobs that the linker does are:
- determine which sections of the object files will go into which segments of the executable.In Binutils, this comes down to parsing a linker script, and dealing with a bunch of defaults.You can get the linker script used with
ld --verbose
, and set a custom one withld -T
. - do relocation according to the
.rela.text
section. This depends on how the multiple sections are put into memory.
readelf -l hello_world.out
gives:Elf file type is EXEC (Executable file)
Entry point 0x4000b0
There are 2 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x00000000000000d7 0x00000000000000d7 R E 200000
LOAD 0x00000000000000d8 0x00000000006000d8 0x00000000006000d8
0x000000000000000d 0x000000000000000d RW 200000
Section to Segment mapping:
Segment Sections...
00 .text
01 .data
On the ELF header, and:
e_phoff
, e_phnum
and e_phentsize
told us that there are 2 program headers, which start at 0x40
and are 0x38
bytes long each, so they are:00000040 01 00 00 00 05 00 00 00 00 00 00 00 00 00 00 00 |................|
00000050 00 00 40 00 00 00 00 00 00 00 40 00 00 00 00 00 |..@.......@.....|
00000060 d7 00 00 00 00 00 00 00 d7 00 00 00 00 00 00 00 |................|
00000070 00 00 20 00 00 00 00 00 |.. ..... |
00000070 01 00 00 00 06 00 00 00 | ........|
00000080 d8 00 00 00 00 00 00 00 d8 00 60 00 00 00 00 00 |..........`.....|
00000090 d8 00 60 00 00 00 00 00 0d 00 00 00 00 00 00 00 |..`.............|
000000a0 0d 00 00 00 00 00 00 00 00 00 20 00 00 00 00 00 |.......... .....|
Structure represented www.sco.com/developers/gabi/2003-12-17/ch5.pheader.html:
typedef struct {
Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
Elf64_Xword p_filesz;
Elf64_Xword p_memsz;
Elf64_Xword p_align;
} Elf64_Phdr;
Breakdown of the first one:
- 40 0:
p_type
=01 00 00 00
=PT_LOAD
: this is a regular segment that will get loaded in memory. - 40 4:
p_flags
=05 00 00 00
= execute and read permissions. No write: we cannot modify the text segment. A classic way to do this in C is with string literals: stackoverflow.com/a/30662565/895245 This allows kernels to do certain optimizations, like sharing the segment amongst processes. - 40 8:
p_offset
= 8x00
TODO: what is this? Standard says:This member gives the offset from the beginning of the file at which the first byte of the segment resides.
But it looks like offsets from the beginning of segments, not file? - 50 0:
p_vaddr
=00 00 40 00 00 00 00 00
: initial virtual memory address to load this segment to - 50 8:
p_paddr
=00 00 40 00 00 00 00 00
: unspecified effect. Intended for systems in which physical addressing matters. TODO example? - 60 0:
p_filesz
=d7 00 00 00 00 00 00 00
: size that the segment occupies in memory. If smaller thanp_memsz
, the OS fills it with zeroes to fit when loading the program. This is how BSS data is implemented to save space on executable files. i368 ABI says onPT_LOAD
:The bytes from the file are mapped to the beginning of the memory segment. If the segment’s memory size (p_memsz) is larger than the file size (p_filesz), the ‘‘extra’’ bytes are defined to hold the value 0 and to follow the segment’s initialized area. The file size may not be larger than the memory size.
- 60 8:
p_memsz
=d7 00 00 00 00 00 00 00
: size that the segment occupies in memory - 70 0:
p_align
=00 00 20 00 00 00 00 00
: 0 or 1 mean no alignment required. TODO why is this required? Why not just usep_addr
directly, and get that right? Docs also say:p_vaddr should equal p_offset, modulo p_align
The second segment (
.data
) is analogous. TODO: why use offset 0x0000d8
and address 0x00000000006000d8
? Why not just use 0
and 0x00000000006000d8
?Then the:section of the
Section to Segment mapping:
readelf
tells us that:- 0 is the
.text
segment. Aha, so this is why it is executable, and not writable - 1 is the
.data
segment.
TODO where does this information come from? stackoverflow.com/questions/23018496/section-to-segment-mapping-in-elf-files
The conventional starting point is not at the E. Coli K-12 MG1655 origin of replication.
biocyc.org/ECOLI/NEW-IMAGE?type=EXTRAGENIC-SITE&object=G0-10506 explains:If it is a bit hard to understand what they mean by "origin of transfer" though, as that term is usually associated with the origin of transfer of bacterial conjugation.
This site is the origin of replication of the E. coli chromosome. It contains the binding sites for DnaA, which is critical for initiation of replication. Replication proceeds bidirectionally. For historical reasons, the numbering of E. coli's circular chromosome does not start at the origin of replication, but at the origin of transfer during conjugation.
There are unlisted articles, also show them or only show them.