1978 Nobel Prize in Chemistry Updated +Created
To Peter D. Mitchell for the discovery of the mechanism of ATP synthesis in the mitochondria, a central part of cellular respiration.
Animation of molecular biology processes Updated +Created
Nothing makes the fact that your life is an illusion clearer than animations of molecular biology processes. You just have no idea what is going on inside your own body right now!
And don't get Ciro Santilli started on the brain and the impossibility of free will.
And yet, we live, oblivious to all of it.
Video 1.
ATP synthase in action by HarvardX (2017)
Source.
Video 3.
The Inner Life of the Cell by XVIVO Scientific Animation (2011)
Source. Also created for BioVisions from Harvard University apparently like other amazing videos. It also has the best music.
Video 4.
DNA animations by wehi.tv for Science-Art exhibition by WEHImovies (2018)
Source.
Video 5.
Dengue virus Invades a Cell by XVIVO Scientific Animation (2008)
Source. Reupload by the MRC Laboratory of Molecular Biology, which was reuploaded from www.pbslearningmedia.org/resource/den08.sci.life.stru.dengue/dengue-virus-invades-a-cell/ which was reuploaded from wherever crazy place XVIVO put it.
ATP synthesis mechanism Updated +Created
ATP is the direct output of all the major forms of "energy generation" in cells:
Citric acid cycle Updated +Created
Mycoplasma genitalium Updated +Created
Size: 300 x 600 nm
Has one of the smallest genomes known, and JCVI made a minimized strain with 473 genes: JCVI-syn3.0.
The reason why genitalium has such a small genome is that parasites tend to have smaller DNAs. So it must be highlighted that genitalium can only survive in highly enriched environments, it can't even make its own amino acids, which it normally obtains fromthe host cells! And because it cannot do cellular respiration, it very likely replicates slower than say E. Coli. It's easy to be small in such scenarios!
Power, Sex, Suicide by Nick Lane (2006) section "How to lose the cell wall without dying" page 184 has some related mentions puts it well very:
One group, the Mycoplasma, comprises mostly parasites, many of which live inside other cells. Mycoplasma cells are tiny, with very small genomes. M. genitalium, discovered in 1981, has the smallest known genome of any bacterial cell, encoding fewer than  genes. Despite its simplicity, it ranks among the most common of sexually transmitted diseases, producing symptoms similar to Chlamydia infection. It is so small (less than a third of a micron in diameter, or an order of magnitude smaller than most bacteria) that it must normally be viewed under the electron microscope; and difficulties culturing it meant its significance was not appreciated until the important advances in gene sequencing in the early 1990s. Like Rickettsia, Mycoplasma have lost virtually all the genes required for making nucleotides, amino acids, and so forth. Unlike Rickettsia, however, Mycoplasma have also lost all the genes for oxygen respiration, or indeed any other form of membrane respiration: they have no cytochromes, and so must rely on fermentation for energy.
Downsides mentioned at youtu.be/PSDd3oHj548?t=293:
  • too small to see on light microscope
  • difficult to genetically manipulate. TODO why?
  • less literature than E. Coli.
Data:
Photosynthesis Updated +Created
It is quite cool that photosynthesis works just like cellular respiration by producing a proton potential through chemiosmosis.