SQUID device Updated +Created
Can be used as a very precise magnetometer.
There are high temperature yttrium barium copper oxide ones that work on liquid nitrogen.
Video 1.
Superconducting Quantum Interference Device by Felipe Contipelli (2019)
Source. Good intuiotionistic video. Some points deserved a bit more detail.
Video 2.
Mishmash of SQUID interviews and talks by Bartek Glowaki
. Source.
The videos come from: www.ascg.msm.cam.ac.uk/lectures/. Vintage.
Mentions that the SQUID device is analogous to a double-slit experiment.
One of the segments is by John Clarke.
Video 3.
Superconducting Quantum Interference Devices by UNSW Physics (2020)
Source.
An experimental lab video for COVID-19 lockdown. Thanks, COVID-19. Presented by a cute and awkward Adam Stewart.
Uses a SQUID device and control system made by STAR Cryoelectronics. We can see Mr. SQUID EB-03 written on the probe and control box, that is their educational product.
As mentioned on the Mr. SQUID specs, it is a high-temperature superconductor, so liquid nitrogen is used.
He then measures the I-V curve on an Agilent Technologies oscilloscope.
Unfortunately, the video doesn't explain very well what is happening behind the scenes, e.g. with a circuit diagram. That is the curse of university laboratory videos: some of them assume that students will have material from other internal sources.
Video 4.
The Ubiquitous SQUID by John Clarke (2018)
Source.
Superconducting quantum computing Updated +Created
Based on the Josephson effect. Yet another application of that phenomenal phenomena!
It is fun to see that the representation of information in the QC basically uses an LC circuit, which is a very classical resonator circuit.
As mentioned at en.wikipedia.org/wiki/Superconducting_quantum_computing#Qubit_archetypes there are actually a few different types of superconducting qubits:
  • flux
  • charge
  • phase
and hybridizations of those such as:
Input:
  • microwave radiation to excite circuit, or do nothing and wait for it to fall to 0 spontaneously
  • interaction: TODO
  • readout: TODO
Video 2.
Quantum Transport, Lecture 16: Superconducting qubits by Sergey Frolov (2013)
Source. youtu.be/Kz6mhh1A_mU?t=1171 describes several possible realizations: charge, flux, charge/flux and phase.
Video 3.
Building a quantum computer with superconducting qubits by Daniel Sank (2019)
Source. Daniel wears a "Google SB" t-shirt, which either means shabi in Chinese, or Santa Barbara. Google Quantum AI is based in Santa Barbara, with links to UCSB.
Video 5.
Superconducting Qubits I Part 1 by Zlatko Minev (2020)
Source.
The Q&A in the middle of talking is a bit annoying.
Video 6.
Superconducting Qubits I Part 2 by Zlatko Minev (2020)
Source.
Video 7.
How to Turn Superconductors Into A Quantum Computer by Lukas's Lab (2023)
Source. This video is just the introduction, too basic. But if he goes through with the followups he promisses, then something might actually come out of it.