Based on the Josephson effect. Yet another application of that phenomenal phenomena!
Philosophically, superconducting qubits are good because superconductivity is macroscopic.
It is fun to see that the representation of information in the QC basically uses an LC circuit, which is a very classical resonator circuit.
As mentioned at en.wikipedia.org/wiki/Superconducting_quantum_computing#Qubit_archetypes there are actually a few different types of superconducting qubits:
- flux
- charge
- phase
and hybridizations of those such as:
Input:
- microwave radiation to excite circuit, or do nothing and wait for it to fall to 0 spontaneously
- interaction: TODO
- readout: TODO
Used e.g. in the Sycamore processor.
The most basic type of transmon is in Ciro's ASCII art circuit diagram notation, an LC circuit e.g. as mentioned at youtu.be/cb_f9KpYipk?t=180 from Video "The transmon qubit by Leo Di Carlo (2018)":
+----------+
| Island 1 |
+----------+
| |
X C
| |
+----------+
| Island 2 |
+----------+
youtu.be/eZJjQGu85Ps?t=2443 from Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)" describes a (possibly simplified) physical model of it, as two superconducting metal islands linked up by a Josephson junction marked as The circuit is then analogous to a LC circuit, with the islands being the capacitor. The Josephson junction functions as a non-linear inductor.
X
in the diagram as per-Ciro's ASCII art circuit diagram notation:+-------+ +-------+
| | | |
| Q_1() |---X---| Q_2() |
| | | |
+-------+ +-------+
Others define it with a SQUID device instead: youtu.be/cb_f9KpYipk?t=328 from Video "The transmon qubit by Leo Di Carlo (2018)". He mentions that this allows tuning the inductive element without creating a new device.