Cross section (physics) Updated +Created
The neutron temperature example is crucial: you just can't give the cross section of a target alone, the energy of the incoming beam also matters.
Maxwell-Boltzmann vs Bose-Einstein vs Fermi-Dirac statistics Updated +Created
Maxwell-Boltzmann statistics, Bose-Einstein statistics and Fermi-Dirac statistics all describe how energy is distributed in different physical systems at a given temperature.
For example, Maxwell-Boltzmann statistics describes how the speeds of particles are distributed in an ideal gas.
The temperature of a gas is only a statistical average of the total energy of the gas. But at a given temperature, not all particles have the exact same speed as the average: some are higher and others lower than the average.
For a large number of particles however, the fraction of particles that will have a given speed at a given temperature is highly deterministic, and it is this that the distributions determine.
One of the main interest of learning those statistics is determining the probability, and therefore average speed, at which some event that requires a minimum energy to happen happens. For example, for a chemical reaction to happen, both input molecules need a certain speed to overcome the potential barrier of the reaction. Therefore, if we know how many particles have energy above some threshold, then we can estimate the speed of the reaction at a given temperature.
The three distributions can be summarized as:
Figure 1.
Maxwell-Boltzmann vs Bose-Einstein vs Fermi-Dirac statistics
. Source.
A good conceptual starting point is to like the example that is mentioned at The Harvest of a Century by Siegmund Brandt (2008).
Consider a system with 2 particles and 3 states. Remember that:
Therefore, all the possible way to put those two particles in three states are for:
  • Maxwell-Boltzmann distribution: both A and B can go anywhere:
    State 1State 2State 3
    AB
    AB
    AB
    AB
    BA
    AB
    BA
    AB
    BA
  • Bose-Einstein statistics: because A and B are indistinguishable, there is now only 1 possibility for the states where A and B would be in different states.
    State 1State 2State 3
    AA
    AA
    AA
    AA
    AA
    AA
  • Fermi-Dirac statistics: now states with two particles in the same state are not possible anymore:
    State 1State 2State 3
    AA
    AA
    AA
Planck's law Updated +Created
Used to explain the black-body radiation experiment.
The Quantum Story by Jim Baggott (2011) page 9 mentions that Planck apparently immediately recognized that Planck constant was a new fundamental physical constant, and could have potential applications in the definition of the system of units (TODO where was that published):
Planck wrote that the constants offered: 'the possibility of establishing units of length, mass, time and temperature which are independent of specific bodies or materials and which necessarily maintain their meaning for all time and for all civilizations, even those which are extraterrestrial and nonhuman, constants which therefore can be called "fundamental physical units of measurement".'
This was a visionary insight, and was finally realized in the 2019 redefinition of the SI base units.
Video 1.
Quantum Mechanics 2 - Photons by ViaScience (2012)
Source. Contains a good explanation of how discretization + energy increases with frequency explains the black-body radiation experiment curve: you need more and more energy for small wavelengths, each time higher above the average energy available.
Plane wave function Updated +Created
In this solution of the Schrödinger equation, by the uncertainty principle, position is completely unknown (the particle could be anywhere in space), and momentum (and therefore, energy) is perfectly known.
The plane wave function appears for example in the solution of the Schrödinger equation for a free one dimensional particle. This makes sense, because when solving with the time-independent Schrödinger equation, we do separation of variable on fixed energy levels explicitly, and the plane wave solutions are exactly fixed energy level ones.
Sexual arousal Updated +Created
Analects translation by Robert Eno (2015) 16.7:
The Junzi has three cautions.
When he is young and his blood and energy are not yet settled, he is cautious about sex.
When he is in his prime and his blood and energy have newly achieved strength, he is cautious about combativeness.
When he is old and his blood and energy are declining, he is cautious about acquisitiveness.