Birch and Swinnerton-Dyer conjecture Updated +Created
The BSD conjecture states that if your name is long enough, it will always count as two letters on a famous conjecture.
Maybe also insert a joke about BSD Operating Systems if you're into that kind of stuff.
The conjecture states that Equation 1. "BSD conjecture" holds for every elliptic curve over the rational numbers (which is defined by its constants and )
Equation 1. . Where the following numbers are defined for the elliptic curve we are currently considering, defined by its constants and :
The conjecture, if true, provides a (possibly inefficient) way to calculate the rank of an elliptic curve over the rational numbers, since we can calculate the number of elements of an elliptic curve over a finite field by Schoof's algorithm in polynomial time. So it is just a matter of calculating like that up to some point at which we are quite certain about .
The Wikipedia page of the this conecture is the perfect example of why it is not possible to teach natural sciences on Wikipedia. A million dollar problem, and the page is thoroughly incomprehensible unless you already know everything!
Figure 1.
as a function of for the elliptic curve
. Source. The curve is known to have rank 1, and the logarithmic plot tends more and more to a line of slope 1 as expected from the conjecture, matching the rank.
Video 2.
The $1,000,000 Birch and Swinnerton-Dyer conjecture by Absolutely Uniformly Confused (2022)
Source. A respectable 1 minute attempt. But will be too fast for most people. The sweet spot is likely 2 minutes.
Deletionism on Wikipedia Updated +Created
Some examples by Ciro Santilli follow.
Of the tutorial-subjectivity type:
Notability constraints, which are are way too strict:
  • even information about important companies can be disputed. E.g. once Ciro Santilli tried to create a page for PsiQuantum, a startup with $650m in funding, and there was a deletion proposal because it did not contain verifiable sources not linked directly to information provided by the company itself: en.wikipedia.org/wiki/Wikipedia:Articles_for_deletion/PsiQuantum Although this argument is correct, it is also true about 90% of everything that is on Wikipedia about any company. Where else can you get any information about a B2B company? Their clients are not going to say anything. Lawsuits and scandals are kind of the only possible source... In that case, the page was deleted with 2 votes against vs 3 votes for deletion.
    should we delete this extremely likely useful/correct content or not according to this extremely complex system of guidelines"
    is very similar to Stack Exchange's own Stack Overflow content deletion issues. Ain't Nobody Got Time For That. "Ain't Nobody Got Time for That" actually has a Wiki page: en.wikipedia.org/wiki/Ain%27t_Nobody_Got_Time_for_That. That's notable. Unlike a $600M+ company of course.
    In December 2023 the page was re-created, and seemed to stick: en.wikipedia.org/wiki/Talk:PsiQuantum#Secondary_sources It's just a random going back and forth. Author Ctjk has an interesting background:
    I am a legal official at a major government antitrust agency. The only plausible connection is we regulate tech firms
There are even a Wikis that were created to remove notability constraints: Wiki without notability requirements.
For these reasons reason why Ciro basically only contributes images to Wikipedia: because they are either all in or all out, and you can determine which one of them it is. And this allows images to be more attributable, so people can actually see that it was Ciro that created a given amazing image, thus overcoming Wikipedia's lack of reputation system a little bit as well.
Wikipedia is perfect for things like biographies, geography, or history, which have a much more defined and subjective expository order. But when it comes to "tutorials of how to actually do stuff", which is what mathematics and physics are basically about, Wikipedia has a very hard time to go beyond dry definitions which are only useful for people who already half know the stuff. But to learn from zero, newbies need tutorials with intuition and examples.
Bibliography:
Elliptic curve Updated +Created
An elliptic curve is defined by numbers and . The curve is the set of all points of the real plane that satisfy the Equation 1. "Definition of the elliptic curves"
Equation 1.
Definition of the elliptic curves
.
Figure 1.
Plots of real elliptic curves for various values of and
. Source.
Equation 1. "Definition of the elliptic curves" definies elliptic curves over any field, it doesn't have to the real numbers. Notably, the definition also works for finite fields, leading to elliptic curve over a finite fields, which are the ones used in Elliptic-curve Diffie-Hellman cyprotgraphy.
Finite algebraic structure Updated +Created
Finite general linear group Updated +Created
general linear group over a finite field of order . Remember that due to the classification of finite fields, there is one single field for each prime power .
Exactly as over the real numbers, you just put the finite field elements into a matrix, and then take the invertible ones.
Polynomial over a field Updated +Created
By default, we think of polynomials over the real numbers or complex numbers.
However, a polynomial can be defined over any other field just as well, the most notable example being that of a polynomial over a finite field.
For example, given the finite field of order 9, and with elements , we can denote polynomials over that ring as
where is the variable name.
For example, one such polynomial could be:
and another one:
Note how all the coefficients are members of the finite field we chose.
Given this, we could evaluate the polynomial for any element of the field, e.g.:
and so on.
We can also add polynomials as usual over the field:
and multiplication works analogously.
This construction takes as input:and it produces an elliptic curve over a finite field of order as output.
The constructions is used in the Birch and Swinnerton-Dyer conjecture.
To do it, we just convert the coefficients and from the Equation "Definition of the elliptic curves" from rational numbers to elements of the finite field.
For example, suppose we have and we are using .
For the denominator , we just use the multiplicative inverse, e.g. supposing we have
where because , related: math.stackexchange.com/questions/1204034/elliptic-curve-reduction-modulo-p
Underlying field of a vector space Updated +Created
Every vector space is defined over a field.
E.g. in , the underlying field is , the real numbers. And in the underlying field is , the complex numbers.
Any field can be used, including finite field. But the underlying thing has to be a field, because the definitions of a vector need all field properties to hold to make sense.
Elements of the underlying field of a vector space are known as scalar.