Degree (algebra) Updated +Created
The degree of some algebraic structure is some parameter that describes the structure. There is no universal definition valid for all structures, it is a per structure type thing.
This is particularly useful when talking about structures with an infinite number of elements, but it is sometimes also used for finite structures.
Examples:
  • the dihedral group of degree n acts on n elements, and has order 2n
  • the parameter that characterizes the size of the general linear group is called the degree of that group, i.e. the dimension of the underlying matrices
Diagonal matrix Updated +Created
Finite general linear group Updated +Created
general linear group over a finite field of order . Remember that due to the classification of finite fields, there is one single field for each prime power .
Exactly as over the real numbers, you just put the finite field elements into a matrix, and then take the invertible ones.
Invertible matrix Updated +Created
The set of all invertible matrices forms a group: the general linear group with matrix multiplication. Non-invertible matrices don't form a group due to the lack of inverse.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Updated +Created
The author seems to have uploaded the entire book by chapters at: www.physics.drexel.edu/~bob/LieGroups.html
And the author is the cutest: www.physics.drexel.edu/~bob/Personal.html.
Overview:
Scalar matrix Updated +Created
Special linear group Updated +Created
Specials sub case of the general linear group when the determinant equals exactly 1.