The orthogonal group has 2 connected components:
- one with determinant +1, which is itself a subgroup known as the special orthogonal group. These are pure rotations without a reflection.
- the other with determinant -1. This is not a subgroup as it does not contain the origin. It represents rotations with a reflection.
It is instructive to visualize how the looks like in :
- you take the first basis vector and move it to any other. You have therefore two angular parameters.
- you take the second one, and move it to be orthogonal to the first new vector. (you can choose a circle around the first new vector, and so you have another angular parameter.
- at last, for the last one, there are only two choices that are orthogonal to both previous ones, one in each direction. It is this directio, relative to the others, that determines the "has a reflection or not" thing
As a result it is isomorphic to the direct product of the special orthogonal group by the cyclic group of order 2:
A low dimensional example:because you can only do two things: to flip or not to flip the line around zero.
Our notation: , called "dihedral group of degree n", means the dihedral group of the regular polygon with sides, and therefore has order (all rotations + flips), called the "dihedral group of order 2n".
By default, we think of polynomials over the real numbers or complex numbers.
However, a polynomial can be defined over any other field just as well, the most notable example being that of a polynomial over a finite field.
For example, given the finite field of order 9, and with elements , we can denote polynomials over that ring aswhere is the variable name.
For example, one such polynomial could be:and another one:Note how all the coefficients are members of the finite field we chose.
Given this, we could evaluate the polynomial for any element of the field, e.g.:and so on.
We can also add polynomials as usual over the field:and multiplication works analogously.