Lecture 1 Updated +Created
Bibliography review:
Course outline given:
Non-relativistic QFT is a limit of relativistic QFT, and can be used to describe for example condensed matter physics systems at very low temperature. But it is still very hard to make accurate measurements even in those experiments.
Defines "relativistic" as: "the Lagrangian is symmetric under the Poincaré group".
Mentions that "QFT is hard" because (a finite list follows???):
There are no nontrivial finite-dimensional unitary representations of the Poincaré group.
But I guess that if you fully understand what that means precisely, QTF won't be too hard for you!
Notably, this is stark contrast with rotation symmetry groups (SO(3)) which appears in space rotations present in non-relativistic quantum mechanics.
Spin number of a field Updated +Created
Physics from Symmetry by Jakob Schwichtenberg (2015) chapter 3.9 "Elementary particles" has an amazing summary of the preceding chapters the spin value has a relation to the representations of the Lorentz group, which encodes the spacetime symmetry that each particle observes. These symmetries can be characterized by small integer numbers: