Basically a synonym for second quantization.
Theoretical framework on which quantum field theories are based, theories based on framework include:so basically the entire Standard Model
The basic idea is that there is a field for each particle particle type.
E.g. in QED, one for the electron and one for the photon: physics.stackexchange.com/questions/166709/are-electron-fields-and-photon-fields-part-of-the-same-field-in-qed.
And then those fields interact with some Lagrangian.
One way to look at QFT is to split it into two parts:Then interwined with those two is the part "OK, how to solve the equations, if they are solvable at all", which is an open problem: Yang-Mills existence and mass gap.
- deriving the Lagrangians of the Standard Model: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s. This is the easier part, since the lagrangians themselves can be understood with not very advanced mathematics, and derived beautifully from symmetry constraints
- the qantization of fields. This is the hard part Ciro Santilli is unable to understand, TODO mathematical formulation of quantum field theory.
There appear to be two main equivalent formulations of quantum field theory:
The wave equation can be seen as infinitely many infinitesimal coupled oscillators Updated 2024-12-15 +Created 1970-01-01
TODO confirm, see also: coupled oscillators. And then this idea can be used to define/motivate quantum field theory in terms of quantum harmonic oscillators with second quantization.
- youtu.be/SMmFgIEGYtw?t=324 Quantum Field Theory 2a - Field Quantization I by ViaScience (2018)