Angular momentum operator Updated +Created
Basically the operators are just analogous to the classical ones e.g. the classical:
becomes:
Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
TODO experiment. Likely Zeeman effect.
Video 1.
Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)
Source.
GitHub Updated +Created
If Ciro Santilli were to write a book about quantum mechanics as of 2020 (before OurBigBook.com went live), he would upload an OurBigBook Markup website to GitHub Pages.
But there is one major problem with that: the entry barrier for new contributors is very large.
If they submit a pull request, Ciro has to review it, otherwise, no one will ever see it.
Our amazing website would allow the reader to add his own example of, say, The uncertainty principle, whenever they wants, under the appropriate section.
Then, people who want to learn more about it, would click on the "defined tag" by the article, and our amazing analytics would point them to the best such articles.
Plane wave function Updated +Created
In this solution of the Schrödinger equation, by the uncertainty principle, position is completely unknown (the particle could be anywhere in space), and momentum (and therefore, energy) is perfectly known.
The plane wave function appears for example in the solution of the Schrödinger equation for a free one dimensional particle. This makes sense, because when solving with the time-independent Schrödinger equation, we do separation of variable on fixed energy levels explicitly, and the plane wave solutions are exactly fixed energy level ones.
Quantum superposition Updated +Created
Quantum superposition is really weird because it is fundamentally different than "either definite state but I don't know which", because the superposition state leads to different measurements than the non-superposition state.
Examples:
Schrödinger equation simulations Updated +Created
Video 1.
Simulation of the time-dependent Schrodinger equation (JavaScript Animation) by Coding Physics (2019)
Source.
Source code: github.com/CodingPhysics/Schroedinger. One dimensional potentials, non-interacting particles. The code is clean, graphics based on github.com/processing/p5.js, and all maths from scratch. Source organization and comments are typical of numerical code, the anonymous author is was likely a Fortran user in the past.
A potential change patch in sketch.js:
-   potential:     x => 2E+4*Math.pow((4*x - 1)*(4*x - 3),2),
+ potential:     x => 4*Math.pow(x - 0.5, 2),
Video 2.
Quantum Mechanics 5b - Schrödinger Equation II by ViaScience (2013)
Source. 2D non-interacting particle in a box, description says using Scilab and points to source. Has a double slit simulation.
Video 3.
Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)
Source. Closed source, but a fantastic visualization and explanation of a 1D free wave packet, including how measurement snaps position to the measured range, position and momentum space and the uncertainty principle.
Time-energy uncertainty principle Updated +Created
There is also a time-energy uncertainty principle, because those two operators are also complementary.
Uncertainty principle Updated +Created
The wave equation contains the entire state of a particle.
From mathematical formulation of quantum mechanics remember that the wave equation is a vector in Hilbert space.
And a single vector can be represented in many different ways in different basis, and two of those ways happen to be the position and the momentum representations.
More importantly, position and momentum are first and foremost operators associated with observables: the position operator and the momentum operator. And both of their eigenvalue sets form a basis of the Hilbert space according to the spectral theorem.
When you represent a wave equation as a function, you have to say what the variable of the function means. And depending on weather you say "it means position" or "it means momentum", the position and momentum operators will be written differently.
Furthermore, the position and momentum representations are equivalent: one is the Fourier transform of the other: position and momentum space. Remember that notably we can always take the Fourier transform of a function in due to Carleson's theorem.
Then the uncertainty principle follows immediately from a general property of the Fourier transform: en.wikipedia.org/w/index.php?title=Fourier_transform&oldid=961707157#Uncertainty_principle
In precise terms, the uncertainty principle talks about the standard deviation of two measures.
We can visualize the uncertainty principle more intuitively by thinking of a wave function that is a real flat top bump function with a flat top in 1D. We can then change the width of the support, but when we do that, the top goes higher to keep probability equal to 1. The momentum is 0 everywhere, except in the edges of the support. Then:
  • to localize the wave in space at position 0 to reduce the space uncertainty, we have to reduce the support. However, doing so makes the momentum variation on the edges more and more important, as the slope will go up and down faster (higher top, and less x space for descent), leading to a larger variance (note that average momentum is still 0, due to to symmetry of the bump function)
  • to localize the momentum as much as possible at 0, we can make the support wider and wider. This makes the bumps at the edges smaller and smaller. However, this also obviously delocalises the wave function more and more, increasing the variance of x