Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
- total angular momentum: determined by the azimuthal quantum number
- angular momentum in one direction ( by convention): determined by the magnetic quantum number
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
TODO experiment. Likely Zeeman effect.
If Ciro Santilli were to write a book about quantum mechanics as of 2020 (before OurBigBook.com went live), he would upload an OurBigBook Markup website to GitHub Pages.
But there is one major problem with that: the entry barrier for new contributors is very large.
If they submit a pull request, Ciro has to review it, otherwise, no one will ever see it.
Our amazing website would allow the reader to add his own example of, say, The uncertainty principle, whenever they wants, under the appropriate section.
Then, people who want to learn more about it, would click on the "defined tag" by the article, and our amazing analytics would point them to the best such articles.
In this solution of the Schrödinger equation, by the uncertainty principle, position is completely unknown (the particle could be anywhere in space), and momentum (and therefore, energy) is perfectly known.
The plane wave function appears for example in the solution of the Schrödinger equation for a free one dimensional particle. This makes sense, because when solving with the time-independent Schrödinger equation, we do separation of variable on fixed energy levels explicitly, and the plane wave solutions are exactly fixed energy level ones.
Quantum superposition is really weird because it is fundamentally different than "either definite state but I don't know which", because the superposition state leads to different measurements than the non-superposition state.
Examples:
- www.youtube.com/watch?v=tt8gVXDsh7Q "Interference in quantum mechanics" by Looking Glass Universe (2015) shows how a left-right spin measurement has a defined value for a superposed half up half down state, but not for a pure up state.TODO can this be conducted? As mentioned in the video, this is closely linked to the fact that you can describe the wave function in multiple different bases (up/down or left/right), which is also at the root of the uncertainty principle.
- Video "Quantum Mechanics 9b - Photon Spin and Schrodinger's Cat II by ViaScience (2013)" gives a similar photon version
- it seems that the single particle double slit experiment can also be thought of as in terms of a superposition of "the particle goes through the right" and "the particle goes through the right", although it is a bit harder to thing about as it is not a discrete process
- www.youtube.com/watch?v=1Z9wo2CzJO8 "Schrodinger equation solved numerically in 3D" by Tetsuya Matsuno. 3D hydrogen atom, code may be hidden in some paper, maybe
- www.youtube.com/playlist?list=PLdCdV2GBGyXM0j66zrpDy2aMXr6cgrBJA "Computational Quantum Mechanics" by Let's Code Physics. Uses a 1D trinket.io.
- www.youtube.com/watch?v=BBt8EugN03Q Simulating Quantum Systems [Split Operator Method] by LeiosOS (2018)
- www.youtube.com/watch?v=86x0_-JGlGQ Simulating the Quantum World on a Classical Computer by Garnet Chan (2016) discusses how modeling only local entanglement can make certain simulations feasible
There is also a time-energy uncertainty principle, because those two operators are also complementary.
The wave equation contains the entire state of a particle.
From mathematical formulation of quantum mechanics remember that the wave equation is a vector in Hilbert space.
And a single vector can be represented in many different ways in different basis, and two of those ways happen to be the position and the momentum representations.
More importantly, position and momentum are first and foremost operators associated with observables: the position operator and the momentum operator. And both of their eigenvalue sets form a basis of the Hilbert space according to the spectral theorem.
When you represent a wave equation as a function, you have to say what the variable of the function means. And depending on weather you say "it means position" or "it means momentum", the position and momentum operators will be written differently.
This is well shown at: Video "Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)".
Furthermore, the position and momentum representations are equivalent: one is the Fourier transform of the other: position and momentum space. Remember that notably we can always take the Fourier transform of a function in due to Carleson's theorem.
Then the uncertainty principle follows immediately from a general property of the Fourier transform: en.wikipedia.org/w/index.php?title=Fourier_transform&oldid=961707157#Uncertainty_principle
In precise terms, the uncertainty principle talks about the standard deviation of two measures.
We can visualize the uncertainty principle more intuitively by thinking of a wave function that is a real flat top bump function with a flat top in 1D. We can then change the width of the support, but when we do that, the top goes higher to keep probability equal to 1. The momentum is 0 everywhere, except in the edges of the support. Then:
- to localize the wave in space at position 0 to reduce the space uncertainty, we have to reduce the support. However, doing so makes the momentum variation on the edges more and more important, as the slope will go up and down faster (higher top, and less x space for descent), leading to a larger variance (note that average momentum is still 0, due to to symmetry of the bump function)
- to localize the momentum as much as possible at 0, we can make the support wider and wider. This makes the bumps at the edges smaller and smaller. However, this also obviously delocalises the wave function more and more, increasing the variance of x
Bibliography:
- www.youtube.com/watch?v=bIIjIZBKgtI&list=PL54DF0652B30D99A4&index=59 "K2. Heisenberg Uncertainty Relation" by doctorphys (2011)
- physics.stackexchange.com/questions/132111/uncertainty-principle-intuition Uncertainty Principle Intuition on Physics Stack Exchange