Shows up when trying to solve 2D wave equation on a circular domain in polar coordinates with separation of variables, where we have to decompose the initial condition in termes of a fourier-Bessel series, exactly like the Fourier series appears when solving the wave equation in linear coordinates.
For the same fundamental reasons, also appears when calculating the Schrödinger equation solution for the hydrogen atom.
Approximates an original function by sines. If the function is "well behaved enough", the approximation is to arbitrary precision.
Fourier's original motivation, and a key application, is solving partial differential equations with the Fourier series.
Can only be used to approximate for periodic functions (obviously from its definition!). The Fourier transform however overcomes that restriction:
The Fourier series behaves really nicely in , where it always exists and converges pointwise to the function: Carleson's theorem.
Not the same as Hermite polynomials.
Show up when solving the Laplace's equation on spherical coordinates by separation of variables, which leads to the differential equation shown at: en.wikipedia.org/w/index.php?title=Legendre_polynomials&oldid=1018881414#Definition_via_differential_equation.