It also has serious applications obviously. www.sympy.org/scipy-2017-codegen-tutorial/ mentions code generation capabilities, which sounds super cool!
Let's start with some basics. fractions:outputs:Note that this is an exact value, it does not get converted to floating-point numbers where precision could be lost!
from sympy import *
sympify(2)/3 + sympify(1)/2
7/6
We can also do everything with symbols:outputs:We can now evaluate that expression object at any time:outputs:
from sympy import *
x, y = symbols('x y')
expr = x/3 + y/2
print(expr)
x/3 + y/2
expr.subs({x: 1, y: 2})
4/3
How about a square root?outputs:so we understand that the value was kept without simplification. And of course:outputs outputs:gives:
x = sqrt(2)
print(x)
sqrt(2)
sqrt(2)**2
2
. Also:sqrt(-1)
I
I
is the imaginary unit. We can use that symbol directly as well, e.g.:I*I
-1
Let's do some trigonometry:gives:and:gives:The exponential also works:gives;
cos(pi)
-1
cos(pi/4)
sqrt(2)/2
exp(I*pi)
-1
Now for some calculus. To find the derivative of the natural logarithm:outputs:Just read that. One over x. Beauty. And now for some integration:outputs:OK.
from sympy import *
x = symbols('x')
print(diff(ln(x), x))
1/x
print(integrate(1/x, x))
log(x)
Let's do some more. Let's solve a simple differential equation:Doing:outputs:which means:To be fair though, it can't do anything crazy, it likely just goes over known patterns that it has solvers for, e.g. if we change it to:it just blows up:Sad.
y''(t) - 2y'(t) + y(t) = sin(t)
from sympy import *
x = symbols('x')
f, g = symbols('f g', cls=Function)
diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)**4)
print(dsolve(diffeq, f(x)))
Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)
diffeq = Eq(f(x).diff(x, x)**2 + f(x), 0)
NotImplementedError: solve: Cannot solve f(x) + Derivative(f(x), (x, 2))**2
Let's try some polynomial equations:which outputs:which is a not amazingly nice version of the quadratic formula. Let's evaluate with some specific constants after the fact:which outputsLet's see if it handles the quartic equation:Something comes out. It takes up the entire terminal. Naughty. And now let's try to mess with it:and this time it spits out something more magic:Oh well.
from sympy import *
x, a, b, c = symbols('x a b c d e f')
eq = Eq(a*x**2 + b*x + c, 0)
sol = solveset(eq, x)
print(sol)
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
sol.subs({a: 1, b: 2, c: 3})
FiniteSet(-1 + sqrt(2)*I, -1 - sqrt(2)*I)
x, a, b, c, d, e, f = symbols('x a b c d e f')
eq = Eq(e*x**4 + d*x**3 + c*x**2 + b*x + a, 0)
solveset(eq, x)
x, a, b, c, d, e, f = symbols('x a b c d e f')
eq = Eq(f*x**5 + e*x**4 + d*x**3 + c*x**2 + b*x + a, 0)
solveset(eq, x)
ConditionSet(x, Eq(a + b*x + c*x**2 + d*x**3 + e*x**4 + f*x**5, 0), Complexes)
Let's try some linear algebra.Let's invert it:outputs:
m = Matrix([[1, 2], [3, 4]])
m**-1
Matrix([
[ -2, 1],
[3/2, -1/2]])
Articles by others on the same topic
Computer algebra, also known as symbolic computation or algebraic computation, refers to the study and development of algorithms and software that perform algebraic manipulations in a symbolic rather than numeric form. This field allows for the manipulation of mathematical expressions, solving equations, and performing other algebraic tasks using symbols rather than numerical approximations.