The MRB constant, or the Molar Reference Boiling point constant, is a value used in thermodynamics and physical chemistry to describe the boiling point of substances at a standard pressure, typically 1 atmosphere. It is particularly relevant for understanding the behavior of substances during phase transitions and in the context of calculations involving colligative properties.
Classical Hamiltonian quaternions refer to a mathematical framework that combines concepts from Hamiltonian mechanics with quaternion algebra. To understand this concept fully, it's helpful to break it down into its components. ### Quaternion Basics Quaternions are a number system that extends complex numbers.
Leonhard Euler (1707–1783) was one of the most prolific and influential mathematicians in history. His contributions span several areas of mathematics and other scientific disciplines. Here are some of his key contributions: 1. **Graph Theory**: Euler is often credited with founding graph theory, particularly through his solution to the Seven Bridges of Königsberg problem in 1736. He introduced the concept of a graph and laid the groundwork for the study of topological properties.
Georg Cantor's set theory, particularly his ideas about infinity and the various sizes or cardinalities of infinity, has generated substantial controversy and debate since its inception in the late 19th century. Here are some key points of contention: 1. **Concept of Actual Infinity**: Cantor introduced the idea of actual infinity, distinguishing between potential infinity (a process that could continue indefinitely) and actual infinity (a completed totality).
In mathematics, "dialling" doesn't refer to a widely recognized concept or term. However, it seems you may be asking about "dial" in the context of mathematics or related fields, or possibly a typographical error for "Dahlian" or something similar.
"The Story of 1" is a children's book by author and illustrator, illustrating the concept of numbers and counting through a simple narrative. The book focuses on the number "1" and explores its significance in various contexts. It teaches children about individuality and the foundation of mathematics in a fun and engaging way. The story typically includes illustrations that depict one of various objects, animals, or scenarios that highlight the number one. The simplicity and repetition in the text help reinforce the concept for young readers.
"The Story of Maths" is a documentary series that explores the history and development of mathematics, highlighting its significance in various cultures and its evolution over time. The series typically delves into key mathematical concepts, notable mathematicians, and landmark discoveries while illustrating how mathematics has shaped human understanding of the world.
"The Great Abraham Lincoln Pocket Watch Conspiracy" is a historical mystery that involves the peculiar nature of the pocket watch owned by Abraham Lincoln. The watch was famously engraved and had a long history that spanned beyond Lincoln's life. The central aspect of the conspiracy revolves around the idea that the watch may have had a connection to the assassination of Lincoln, which took place on April 14, 1865.
"Gaṇita-sāra-saṅgraha" is a significant historical text in the field of mathematics, particularly in Indian mathematics. Written by the mathematician Bhāskara I in the 7th century CE, it serves as a concise compilation of various mathematical concepts and methods. The title translates to "Essence of Mathematics" or "Compendium of Mathematics." The work is primarily notable for its early treatment of arithmetic, algebra, and geometry.
George Gheverghese Joseph is a distinguished mathematician and scholar known for his contributions to the history of mathematics, particularly in the context of the mathematics of the Indian subcontinent. He holds academic positions and has been involved in promoting the understanding of the historical and cultural aspects of mathematics. Joseph is also recognized for his advocacy of diverse mathematical perspectives and for highlighting the contributions of non-Western mathematicians.
The "Glossary of Invariant Theory" typically refers to a compilation of definitions, terms, and concepts related to invariant theory, a branch of mathematics that studies properties of algebraic objects that remain unchanged under certain transformations. Invariant theory is closely linked with group actions, especially in the context of algebraic geometry and representation theory.
Utpala was an Indian astronomer and mathematician who lived during the 10th century. He is known for his contributions to astronomy and was associated with the tradition of Indian astronomical studies. Utpala is particularly recognized for his work on the "Siddhanta," which refers to a set of astronomical texts that outlined various astronomical calculations and principles. His contributions are significant within the context of Indian astronomy, which was highly developed during this period, incorporating both observational and mathematical methods.
Govinda Bhattathiri, often referred to simply as Bhattathiri, was a notable figure in the realm of Malayalam literature and is recognized for his contributions to the fields of poetry and drama. He lived during the 18th century in Kerala, India, and is particularly known for his work in the realm of classical Sanskrit and its influence on Malayalam literature.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact