Parallel light by Ciro Santilli 37 Updated 2025-07-16
Often just called collimated light due to the collimator being the main procedure to obtain it.
However, you move very far away from the source, e.g. the Sun, you also get essentially parallel light.
Carl Zeiss AG by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Carl Zeiss, Explained by Asianometry (2021)
Source.
Video 2.
How Carl Zeiss Crafts Optics for a $150 Million EUV Machine
. Source. Difficulty: light at those frequencies get absorbed by lenses. So you have to use mirrors instead.
Particularly cool is to see how Fresnel fully understood that light is somehow polarized, even though he did not know that it was made out of electromagnetism, clear indication of which only came with the Faraday effect in 1845.
spie.org/publications/fg05_p03_maluss_law:
At the beginning of the nineteenth century the only known way to generate polarized light was with a calcite crystal. In 1808, using a calcite crystal, Malus discovered that natural incident light became polarized when it was reflected by a glass surface, and that the light reflected close to an angle of incidence of 57° could be extinguished when viewed through the crystal. He then proposed that natural light consisted of the s- and p-polarizations, which were perpendicular to each other.
Optical table by Ciro Santilli 37 Updated 2025-07-16
For example, that is how most modern microscopes are prototyped, see for example Video "Two Photon Microscopy by Nemonic NeuroNex (2019)".
This is kind of why they are also sometimes called "optical breadboarbds", since breadboards are what we use for early prototyping in electronics. Wikipedia however says "optical breadboard" is a simpler and cheaper type of optical table with less/no stabilization.
Video 1.
A simple refracting telescope built on an optical bench by plenum88 (2013)
Source.
Higgs boson by Ciro Santilli 37 Updated 2025-07-16
Initially there were mathematical reasons why people suspected that all boson needed to have 0 mass as is the case for photons a gluons, see Goldstone's theorem.
However, experiments showed that the W boson and the Z boson both has large non-zero masses.
So people started theorizing some hack that would fix up the equations, and they came up with the higgs mechanism.
Oil drop experiment by Ciro Santilli 37 Updated 2025-07-16
Clear experiment diagram which explains that the droplet mass determined with Stoke's law:
Video 1.
Quantum Mechanics 4a - Atoms I by ViaScience (2013)
Source.
American Scientific, LLC sells a ready made educational kit for this: www.youtube.com/watch?v=EV3BtoMGA9c
Here's some actual footage of a droplet on a well described more one-off setup:
Video 2.
Millikan's Experiment, Part 2: The Experiment by Phil Furneaux (2017)
Source. From Lancaster University
This American video likely from the 60's shows it with amazing contrast: www.youtube.com/watch?v=_UDT2FcyeA4
"Barys" means "heavy" in Greek, because protons and neutrons was what made most of the mass of known ordinary matter, as opposed notably to electrons.
Baryons can be contrasted with:
Meson by Ciro Santilli 37 Updated 2025-07-16
composite particle made up of an even number of elementary particles, most commonly one particle and one anti-particle.
This can be contrasted with mesons, which have an odd number of elementary particles, as mentioned at baryon vs meson vs lepton.
Pion by Ciro Santilli 37 Updated 2025-07-16
Conceptually the simplest mesons. All of them have neutral color charge:
  • charged: down + anti-up or up + anti-down, therefore with net electrical charge electron charge
  • neutral: down + anti-down or up + anti-up, therefore with net electrical charge 0

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact