SageMath by Ciro Santilli 37 Updated 2025-07-16
A Python wrapper over a bunch of numeric and computer algebra system packages to try and fully replace MATLAB et. al.
For example, their
Quickstart tutorial at: www.sagemath.org/tour-quickstart.html From this we see that they are very opinionated, you don't need to import anything, everything has a pre-defined global name, which is convenient, e.g.:
is the 3D vector space over the rationals. This also suggests that they are quite focused on computer algebra as opposed to numerical.
Ruby on Rails by Ciro Santilli 37 Updated 2025-07-16
The only reason why Ruby exists.
This web framework is pretty good as of 2020 compared to others, because it managed to gain a critical community size, and there's a lot of basic setup already done for you.
it is just big shame it wasn't written in Python or even better, Node.js, because learning Ruby is completely useless for anything else. As of 2020 for example, most Node.js web frameworks feel like crap compared to Rails, you just have to debug so much there.
Used in GitLab, which is why Ciro Santilli touched it.
Does not happen every time, only some times. Can't figure out why. Usually happens when has suspended for a longer time.
bugs.launchpad.net/ubuntu/+source/nvidia-graphics-drivers-470/+bug/1946303 sounds like a likely report, Nvidia driver version 470, but can't find those error messages anywhere. The last line of:
journalctl -o short-precise -k -b -1
once was:
PM: suspend entry (deep)
which is when sleep starts.
This suggests that it is not a video bug then, seems that it is not waking up at all? Gotta try to SSH into it. OK. I did SSH into it, and that was fine, so it is just the video that won't start.
PM: suspend exit
bugs.launchpad.net/ubuntu/+source/linux/+bug/1949977 is another possible bug, based on kernel version. I'm running 5.13, which is one of the failing versions on the report. Can't find any interesting dmesg though.
In another crash:
journalctl -o short-precise -k -b -1
had the following interesting lines:
nvidia-modeset: WARNING: GPU:0: Lost display notification (0:0x00000000); continuing.
[24307.640014] NVRM: GPU at PCI:0000:01:00: GPU-18af74bb-7c72-ff70-e447-87d48378ea20
[24307.640018] NVRM: Xid (PCI:0000:01:00): 79, pid=8828, GPU has fallen off the bus.
[24307.640021] NVRM: GPU 0000:01:00.0: GPU has fallen off the bus.
[24328.054022] nvidia-modeset: ERROR: GPU:0: The requested configuration of display devices (LGD (DP-4)) is not supported on this GPU.
[repeats several more times]
[24328.056767] nvidia-modeset: ERROR: GPU:0: The requested configuration of display devices (LGD (DP-4)) is not supported on this GPU.
[24328.056951] nvidia-modeset: ERROR: GPU:0: Failed to query display engine channel state: 0x0000927c:0:0:0x0000000f
[24328.056955] nvidia-modeset: ERROR: GPU:0: Failed to query display engine channel state: 0x0000927c:1:0:0x0000000f
[24328.056959] nvidia-modeset: ERROR: GPU:0: Failed to query display engine channel state: 0x0000927c:2:0:0x0000000f
[24328.056962] nvidia-modeset: ERROR: GPU:0: Failed to query display engine channel state: 0x0000927c:3:0:0x0000000f
[24328.056983] nvidia-modeset: ERROR: GPU:0: DP-4: Failed to disable DisplayPort audio stream-0
[24328.056992] nvidia-modeset: ERROR: GPU:0: Failed to query display engine channel state: 0x0000947d:0:0:0x0000000f
and there was a corresponding /var/crash/_usr_sbin_gdm3.0.crash.
Some anecdotes.
Ciro Santilli never splits up functions unless there is more than one calling point. If you split early, the chances that the interface will be wrong are huge, and a much larger refactoring follows.
If you just want to separate variables, just use a scope e.g.:
int cross_block_var;

// First step.
{
    int myvar;
}

// Second step.
{
    int myvar;
}
Ciro has seen and had to deal with in his lifetime with two projects that had like 3 to 10 git separate Git repositories, all created and maintained by the same small group of developers of the same organization, even though one could not build without the other. Keeping everything in sync was Hell! Why not just have three directories inside a single repository with a single source of truth?
Another important case: Linux should have at least a C standard library, init system, and shell in-tree, like BSD Operating Systems, as mentioned at: Section "Linux".
GitHub by Ciro Santilli 37 Updated 2025-07-16
This is where Ciro Santilli stored his code since he started coding nonstop in 2013.
He does not like the closed source aspect of it, but hey, there are more important things to worry about, the network effect is just too strong.
Asset bundler by Ciro Santilli 37 Updated 2025-07-16
In order to make websites efficient and portable, a lot of transpilation is needed.
God, it's impossible! You just have to convert the entire fucking call stack all the way up to async functions. It could mean refactoring hundreds of functions.
To be fair, there is a logic to this, if you put yourself within the crappiness of the JavaScript threading model. And Python is not that much better with its Global Interpreter Lock.
The problem is that async was introduced relatively late, previously we just had to use infinitely deep callback trees, which was worse:
myAsync().then(ret => myAsync2(ret).then(ret2 => myAsync3(re3)))
compared to the new infinitely more readable:
ret = await myAsync()
ret2 = await myAsync2(ret)
ret3 = await myAsync3(ret3)
But now we are in an endless period of transition between both worlds.
It is also worth mentioning that callbacks are still inescapable if you really want to fan out into a non-linear dependency graph, usually with Promise.all:
await Promise.all([
  myAsync(1).then(ret => myAsync2(ret)),
  myAsync(2).then(ret => myAsync2(ret)),
])
And then, after many many hours of this work, you might notice that the new code is way, way way slower than before, because making small functions async has a large performance impact: madelinemiller.dev/blog/javascript-promise-overhead/. Real world case with a 4x slowdown: github.com/ourbigbook/ourbigbook/tree/async-slow.
Anyways, since you Googled here, you might as well learn the standard pattern to convert callbacks functions into async functions using a promise: stackoverflow.com/questions/4708787/get-password-from-input-using-node-js/71868483#71868483
Figure 1.
async function Teletubbies meme
. Source. TODO find original source.
Chromium (web browser) by Ciro Santilli 37 Updated 2025-07-16
Google is trying to kill it as of 2021: www.omgubuntu.co.uk/2021/01/chromium-sync-google-api-removed The lack of sync is a major major blow. So selfish. Google makes billions, and it won't give in a little bit of settings storage...
Integrated circuit by Ciro Santilli 37 Updated 2025-08-08
It is quite amazing to read through books such as The Supermen: The Story of Seymour Cray by Charles J. Murray (1997), as it makes you notice that earlier CPUs (all before the 70's) were not made with integrated circuits, but rather smaller pieces glued up on PCBs! E.g. the arithmetic logic unit was actually a discrete component at one point.
The reason for this can also be understood quite clearly by reading books such as Robert Noyce: The Man Behind the Microchip by Leslie Berlin (2006). The first integrated circuits were just too small for this. It was initially unimaginable that a CPU would fit in a single chip! Even just having a very small number of components on a chip was already revolutionary and enough to kick-start the industry. Just imagine how much money any level of integration saved in those early days for production, e.g. as opposed to manually soldering point-to-point constructions. Also the reliability, size an weight gains were amazing. In particular for military and spacial applications originally.
Video 1.
A briefing on semiconductors by Fairchild Semiconductor (1967)
Source.
Shows:
Verilog by Ciro Santilli 37 Updated 2025-07-16
Examples under verilog, more details at Verilator.
Page directory given to process by the OS:
entry index   entry address      page table address  present
-----------   ----------------   ------------------  --------
0             CR3 + 0      * 4   0x10000             1
1             CR3 + 1      * 4                       0
2             CR3 + 2      * 4   0x80000             1
3             CR3 + 3      * 4                       0
...
2^10-1        CR3 + 2^10-1 * 4                       0
Page tables given to process by the OS at PT1 = 0x10000000 (0x10000 * 4K):
entry index   entry address      page address  present
-----------   ----------------   ------------  -------
0             PT1 + 0      * 4   0x00001       1
1             PT1 + 1      * 4                 0
2             PT1 + 2      * 4   0x0000D       1
...                                  ...
2^10-1        PT1 + 2^10-1 * 4   0x00005       1
Page tables given to process by the OS at PT2 = 0x80000000 (0x80000 * 4K):
entry index   entry address     page address  present
-----------   ---------------   ------------  ------------
0             PT2 + 0     * 4   0x0000A       1
1             PT2 + 1     * 4   0x0000C       1
2             PT2 + 2     * 4                 0
...
2^10-1        PT2 + 0x3FF * 4   0x00003       1
where PT1 and PT2: initial position of page table 1 and page table 2 for process 1 on RAM.
With that setup, the following translations would happen:
linear    10 10 12 split  physical
--------  --------------  ----------
00000001  000 000 001     00001001
00001001  000 001 001     page fault
003FF001  000 3FF 001     00005001
00400000  001 000 000     page fault
00800001  002 000 001     0000A001
00801004  002 001 004     0000C004
00802004  002 002 004     page fault
00B00001  003 000 000     page fault
Let's translate the linear address 0x00801004 step by step:
  • In binary the linear address is:
    0    0    8    0    1    0    0    4
    0000 0000 1000 0000 0001 0000 0000 0100
  • Grouping as 10 | 10 | 12 gives:
    0000000010 0000000001 000000000100
    0x2        0x1        0x4
    which gives:
    page directory entry = 0x2
    page table     entry = 0x1
    offset               = 0x4
    So the hardware looks for entry 2 of the page directory.
  • The page directory table says that the page table is located at 0x80000 * 4K = 0x80000000. This is the first RAM access of the process.
    Since the page table entry is 0x1, the hardware looks at entry 1 of the page table at 0x80000000, which tells it that the physical page is located at address 0x0000C * 4K = 0x0000C000. This is the second RAM access of the process.
  • Finally, the paging hardware adds the offset, and the final address is 0x0000C004.
Page faults occur if either a page directory entry or a page table entry is not present.
The Intel manual gives a picture of this translation process in the image "Linear-Address Translation to a 4-KByte Page using 32-Bit Paging": Figure 1. "x86 page translation process"
Figure 1.
x86 page translation process
.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact