University of Oxford intellectual property policy Updated +Created
For students (who are paying for the university to start with...), they will not claim tutorials linked to courses. But a tutorial that shows university laboratories, it is unclear: www.ox.ac.uk/students/academic/guidance/intellectual-property (archive) This likely includes graduate students, who are also not paid by the university.
For faculty, the university owns everything it seems, to be confirmed.
Bôbar (École Polytechnique) Updated +Created
The student organized bar of the École. There's a corresponding Binet that takes care of it.
Blockchain.info Updated +Created
TODO who owns it? Are they reliable?
This helper dumps a transaction JSON to a binary:
bitcoin-tx-out-scripts() (
    # Dump data contained in out scripts. Remove first 3 last 2 bytes of
    # standard transaction boilerplate.
    h="$1"
    echo curl "https://blockchain.info/tx/${h}?format=json" |
    jq '.out[].script' tmp.json |
    sed 's/"76a914//;s/88ac"//' |
    xxd -r -p > "${h}.bin"
)
IRC log dumps Updated +Created
tx 210000d1392bec2505d1289e5c39c2039204ff1ecf7eef55f973ccd3111003e1, block 360235 (2015-06-10) and the following transactions have transcripts of a very long developer chat starting with:
jgarzik: if you aren't near one of the consulates there are some companies that will charge you money to do it...
TODO purpose? The transcripts are interspersed with developers likely voting for project leadership, and commenting on Gavin.
TODO find original discussion location, these are almost certainly from one of the Bitcoin IRC channels.
Part of the goal of this dump is that the Bitcoin developers have a policy of not allowing logging on their talk channel, and this released it all to the blockchain forever where it cannot be deleted. These might just be more of protests against larger block sizes.
g5.xlarge Updated +Created
AI safety Updated +Created
Basically ensuring that good AI alignment allows us to survive the singularity.
activatedgeek/LeNet-5 run on GPU Updated +Created
By default, the setup runs on CPU only, not GPU, as could be seen by running htop. But by the magic of PyTorch, modifying the program to run on the GPU is trivial:
cat << EOF | patch
diff --git a/run.py b/run.py
index 104d363..20072d1 100644
--- a/run.py
+++ b/run.py
@@ -24,7 +24,8 @@ data_test = MNIST('./data/mnist',
 data_train_loader = DataLoader(data_train, batch_size=256, shuffle=True, num_workers=8)
 data_test_loader = DataLoader(data_test, batch_size=1024, num_workers=8)

-net = LeNet5()
+device = 'cuda'
+net = LeNet5().to(device)
 criterion = nn.CrossEntropyLoss()
 optimizer = optim.Adam(net.parameters(), lr=2e-3)

@@ -43,6 +44,8 @@ def train(epoch):
     net.train()
     loss_list, batch_list = [], []
     for i, (images, labels) in enumerate(data_train_loader):
+        labels = labels.to(device)
+        images = images.to(device)
         optimizer.zero_grad()

         output = net(images)
@@ -71,6 +74,8 @@ def test():
     total_correct = 0
     avg_loss = 0.0
     for i, (images, labels) in enumerate(data_test_loader):
+        labels = labels.to(device)
+        images = images.to(device)
         output = net(images)
         avg_loss += criterion(output, labels).sum()
         pred = output.detach().max(1)[1]
@@ -84,7 +89,7 @@ def train_and_test(epoch):
     train(epoch)
     test()

-    dummy_input = torch.randn(1, 1, 32, 32, requires_grad=True)
+    dummy_input = torch.randn(1, 1, 32, 32, requires_grad=True).to(device)
     torch.onnx.export(net, dummy_input, "lenet.onnx")

     onnx_model = onnx.load("lenet.onnx")
EOF
and leads to a faster runtime, with less user as now we are spending more time on the GPU than CPU:
real    1m27.829s
user    4m37.266s
sys     0m27.562s
C. elegans models and databases Updated +Created
Internet Census 2012 Updated +Created
Does not appear to have any reverse IP hits unfortunately: opendata.stackexchange.com/questions/1951/dataset-of-domain-names/21077#21077. Likely only has domains that were explicitly advertised.
We could not find anything useful in it so far, but there is great potential to use this tool to find new IP ranges based on properties of existing IP ranges. Part of the problem is that the dataset is huge, and is split by top 256 bytes. But it would be reasonable to at least explore ranges with pre-existing known hits...
We have started looking for patterns on 66.* and 208.*, both selected as two relatively far away ranges that have a number of pre-existing hits. 208 should likely have been 212 considering later finds that put several ranges in 212.
tcpip_fp:
  • 66.104.
    • 66.104.175.41: grubbersworldrugbynews.com: 1346397300 SCAN(V=6.01%E=4%D=1/12%OT=22%CT=443%CU=%PV=N%G=N%TM=387CAB9E%P=mipsel-openwrt-linux-gnu),ECN(R=N),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=N),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.48: worlddispatch.net: 1346816700 SCAN(V=6.01%E=4%D=1/2%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=1D5EA%P=mipsel-openwrt-linux-gnu),SEQ(SP=F8%GCD=3%ISR=109%TI=Z%TS=A),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.49: webworldsports.com: 1346692500 SCAN(V=6.01%E=4%D=9/3%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=5044E96E%P=mipsel-openwrt-linux-gnu),SEQ(SP=105%GCD=1%ISR=108%TI=Z%TS=A),OPS(O1=M550ST11NW6%O2=M550ST11NW6%O3=M550NNT11NW6%O4=M550ST11NW6%O5=M550ST11NW6%O6=M550ST11),WIN(W1=1510%W2=1510%W3=1510%W4=1510%W5=1510%W6=1510),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.50: fly-bybirdies.com: 1346822100 SCAN(V=6.01%E=4%D=1/1%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=14655%P=mipsel-openwrt-linux-gnu),SEQ(TI=Z%TS=A),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.53: info-ology.net: 1346712300 SCAN(V=6.01%E=4%D=9/4%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=50453230%P=mipsel-openwrt-linux-gnu),SEQ(SP=FB%GCD=1%ISR=FF%TI=Z%TS=A),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
  • 66.175.106
    • 66.175.106.150: noticiasmusica.net: 1340077500 SCAN(V=5.51%D=1/3%OT=22%CT=443%CU=%PV=N%G=N%TM=38707542%P=mipsel-openwrt-linux-gnu),ECN(R=N),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.175.106.155: atomworldnews.com: 1345562100 SCAN(V=5.51%D=8/21%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=5033A5F2%P=mips-openwrt-linux-gnu),SEQ(SP=FB%GCD=1%ISR=FC%TI=Z%TS=A),ECN(R=Y%DF=Y%TG=40%W=1540%O=M550NNSNW6%CC=N%Q=),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
Classification of 5-transitive groups Updated +Created
www.maths.qmul.ac.uk/~pjc/pps/pps9.pdf mentions:
The automorphism group of the extended Golay code is the 54-transitive Mathieu group . This is one of only two finite 5-transitive groups other than symmetric and alternating groups
Hmm, is that 54, or more likely 5 and 4?
Other architectures Updated +Created
Peter Cordes mentions that some architectures like MIPS leave paging almost completely in the hands of software: a TLB miss runs an OS-supplied function to walk the page tables, and insert the new mapping into the TLB. In such architectures, the OS can use whatever data structure it wants.
Ordinal ruleset inscription Updated +Created
Ordinals are inscriptions created with the protocol described at: docs.ordinals.com/inscriptions.html The protocol was designed by developer Casey Rodarmor, and shares a few similarities with the AtomSea & EMBII protocol.
The protocol also includes a way to have ownership over inscriptions, effectively creating an NFT system on top of the bitcoin blockchain. AtomSea & EMBII also already had such a system however. In either case, Ciro Santilli couldn't give less of a fuck about who owns some random publicly viewable digital asset.
For whatever reason, orinals became extremelly popular compared to the AtomSea & EMBII format, leading to millions os inscriptions, and 10k+ images as of block 830k. They also started to take up a substatial portion of the available block space.
This in turn led to a lot of child porn rediscussion, and people linking back to this page to view earlier inscriptions: incoming links.
Unfortunately, unlike AtomSea & EMBII and even cryptograffiti.info uploads, most ordinals are designed to be just souless bulk collectibles, as with as much artistic merit as any random collectible card set or postage stamps you may find at a newpaper stall. To make things worse many of them are likely algorithmically generated. Eternal September had truly arrived to the Bitcoin blockchain. As a result, machine learning would be almost essential in order to find interesting uploads amidst such bulk.
The source code for the reference uploader and indexer is at: github.com/ordinals/ord
The reference viewer server for the runs at: ordinals.com.
The i0 at the end of the URL above means "inscription 0". This is because a single transaction can have multiple inscriptions.
Some of them have sold for high prices. Magic Eden is a popular interface for trading them:
The ordinals also started taking up large portions of the Bitcoin blockchain:
Apparently the "Taproot" Bitcoin update made it easier to upload image-sized data once again, which had become prohibitively expensive 2023 and much earlier:
Lumai Updated +Created
Dan Dascalescu Updated +Created
Daisy chain Bitcoin inscription Updated +Created
This is a term invented by Ciro Santilli, and refers to a loose set of uncommon Bitcoin inscription methods that involve inscribing one or a small number of payloads per Bitcoin transaction.
These methods are both inefficient and hard to detect and decode, partly because Bitcoin Core does not index spending transactions: bitcoin.stackexchange.com/questions/61794/bitcoin-rpc-how-to-find-the-transaction-that-spends-a-txo. This makes finding them all that more rewarding however.
On the other hand, they do have the advantage of not depending on any block size limits, as their individual transactions are very small.
Inscribing anything large would however take a very long time, as you'd have to wait until the previous payload chunk is confirmed before going to the next one. This alone makes the format impractical perhaps.
Fish Updated +Created
This paraphyletic subgroup is easy to form the "acquatic only" (fishes) vs "things that come out of water" (tetrapods). Though mudfish make that distinction harder.
Which kind of makes sense, why would you want for limbs unless you are going to stay out of water!

There are unlisted articles, also show them or only show them.